![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isringid | Structured version Visualization version GIF version |
Description: Properties showing that an element 𝐼 is the unity element of a ring. (Contributed by NM, 7-Aug-2013.) |
Ref | Expression |
---|---|
ringidm.b | ⊢ 𝐵 = (Base‘𝑅) |
ringidm.t | ⊢ · = (.r‘𝑅) |
ringidm.u | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
isringid | ⊢ (𝑅 ∈ Ring → ((𝐼 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥)) ↔ 1 = 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
2 | ringidm.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | 1, 2 | mgpbas 20073 | . 2 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
4 | ringidm.u | . . 3 ⊢ 1 = (1r‘𝑅) | |
5 | 1, 4 | ringidval 20116 | . 2 ⊢ 1 = (0g‘(mulGrp‘𝑅)) |
6 | ringidm.t | . . 3 ⊢ · = (.r‘𝑅) | |
7 | 1, 6 | mgpplusg 20071 | . 2 ⊢ · = (+g‘(mulGrp‘𝑅)) |
8 | 2, 6 | ringideu 20187 | . . 3 ⊢ (𝑅 ∈ Ring → ∃!𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥)) |
9 | reurex 3376 | . . 3 ⊢ (∃!𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥) → ∃𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥)) | |
10 | 8, 9 | syl 17 | . 2 ⊢ (𝑅 ∈ Ring → ∃𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥)) |
11 | 3, 5, 7, 10 | ismgmid 18618 | 1 ⊢ (𝑅 ∈ Ring → ((𝐼 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥)) ↔ 1 = 𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3057 ∃wrex 3066 ∃!wreu 3370 ‘cfv 6542 (class class class)co 7414 Basecbs 17173 .rcmulr 17227 mulGrpcmgp 20067 1rcur 20114 Ringcrg 20166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-plusg 17239 df-0g 17416 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-mgp 20068 df-ur 20115 df-ring 20168 |
This theorem is referenced by: imasring 20259 subrg1 20514 cnfld1 21314 cnfld1OLD 21315 pzriprnglem9 21408 pzriprnglem14 21413 psr1 21907 mat1 22342 rloc1r 32980 erng1lem 40454 erngdvlem4-rN 40466 |
Copyright terms: Public domain | W3C validator |