![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > issubgrpd2 | Structured version Visualization version GIF version |
Description: Prove a subgroup by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014.) |
Ref | Expression |
---|---|
issubgrpd.s | ⊢ (𝜑 → 𝑆 = (𝐼 ↾s 𝐷)) |
issubgrpd.z | ⊢ (𝜑 → 0 = (0g‘𝐼)) |
issubgrpd.p | ⊢ (𝜑 → + = (+g‘𝐼)) |
issubgrpd.ss | ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) |
issubgrpd.zcl | ⊢ (𝜑 → 0 ∈ 𝐷) |
issubgrpd.acl | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) |
issubgrpd.ncl | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷) |
issubgrpd.g | ⊢ (𝜑 → 𝐼 ∈ Grp) |
Ref | Expression |
---|---|
issubgrpd2 | ⊢ (𝜑 → 𝐷 ∈ (SubGrp‘𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubgrpd.ss | . 2 ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) | |
2 | issubgrpd.zcl | . . 3 ⊢ (𝜑 → 0 ∈ 𝐷) | |
3 | 2 | ne0d 4336 | . 2 ⊢ (𝜑 → 𝐷 ≠ ∅) |
4 | issubgrpd.p | . . . . . . . 8 ⊢ (𝜑 → + = (+g‘𝐼)) | |
5 | 4 | oveqd 7437 | . . . . . . 7 ⊢ (𝜑 → (𝑥 + 𝑦) = (𝑥(+g‘𝐼)𝑦)) |
6 | 5 | ad2antrr 725 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) = (𝑥(+g‘𝐼)𝑦)) |
7 | issubgrpd.acl | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) | |
8 | 7 | 3expa 1116 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) |
9 | 6, 8 | eqeltrrd 2830 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑦 ∈ 𝐷) → (𝑥(+g‘𝐼)𝑦) ∈ 𝐷) |
10 | 9 | ralrimiva 3143 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ∀𝑦 ∈ 𝐷 (𝑥(+g‘𝐼)𝑦) ∈ 𝐷) |
11 | issubgrpd.ncl | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷) | |
12 | 10, 11 | jca 511 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (∀𝑦 ∈ 𝐷 (𝑥(+g‘𝐼)𝑦) ∈ 𝐷 ∧ ((invg‘𝐼)‘𝑥) ∈ 𝐷)) |
13 | 12 | ralrimiva 3143 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐷 (∀𝑦 ∈ 𝐷 (𝑥(+g‘𝐼)𝑦) ∈ 𝐷 ∧ ((invg‘𝐼)‘𝑥) ∈ 𝐷)) |
14 | issubgrpd.g | . . 3 ⊢ (𝜑 → 𝐼 ∈ Grp) | |
15 | eqid 2728 | . . . 4 ⊢ (Base‘𝐼) = (Base‘𝐼) | |
16 | eqid 2728 | . . . 4 ⊢ (+g‘𝐼) = (+g‘𝐼) | |
17 | eqid 2728 | . . . 4 ⊢ (invg‘𝐼) = (invg‘𝐼) | |
18 | 15, 16, 17 | issubg2 19095 | . . 3 ⊢ (𝐼 ∈ Grp → (𝐷 ∈ (SubGrp‘𝐼) ↔ (𝐷 ⊆ (Base‘𝐼) ∧ 𝐷 ≠ ∅ ∧ ∀𝑥 ∈ 𝐷 (∀𝑦 ∈ 𝐷 (𝑥(+g‘𝐼)𝑦) ∈ 𝐷 ∧ ((invg‘𝐼)‘𝑥) ∈ 𝐷)))) |
19 | 14, 18 | syl 17 | . 2 ⊢ (𝜑 → (𝐷 ∈ (SubGrp‘𝐼) ↔ (𝐷 ⊆ (Base‘𝐼) ∧ 𝐷 ≠ ∅ ∧ ∀𝑥 ∈ 𝐷 (∀𝑦 ∈ 𝐷 (𝑥(+g‘𝐼)𝑦) ∈ 𝐷 ∧ ((invg‘𝐼)‘𝑥) ∈ 𝐷)))) |
20 | 1, 3, 13, 19 | mpbir3and 1340 | 1 ⊢ (𝜑 → 𝐷 ∈ (SubGrp‘𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2937 ∀wral 3058 ⊆ wss 3947 ∅c0 4323 ‘cfv 6548 (class class class)co 7420 Basecbs 17179 ↾s cress 17208 +gcplusg 17232 0gc0g 17420 Grpcgrp 18889 invgcminusg 18890 SubGrpcsubg 19074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-0g 17422 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-grp 18892 df-minusg 18893 df-subg 19077 |
This theorem is referenced by: issubgrpd 19097 symgsssg 19421 symgfisg 19422 issubrgd 21081 dsmmsubg 21676 nsgmgclem 33121 |
Copyright terms: Public domain | W3C validator |