Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nsgmgclem Structured version   Visualization version   GIF version

Theorem nsgmgclem 33115
Description: Lemma for nsgmgc 33116. (Contributed by Thierry Arnoux, 27-Jul-2024.)
Hypotheses
Ref Expression
nsgmgclem.b 𝐵 = (Base‘𝐺)
nsgmgclem.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
nsgmgclem.p = (LSSum‘𝐺)
nsgmgclem.n (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
nsgmgclem.f (𝜑𝐹 ∈ (SubGrp‘𝑄))
Assertion
Ref Expression
nsgmgclem (𝜑 → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ∈ (SubGrp‘𝐺))
Distinct variable groups:   ,𝑎   𝐵,𝑎   𝐹,𝑎   𝐺,𝑎   𝑁,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝑄(𝑎)

Proof of Theorem nsgmgclem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2729 . 2 (𝜑 → (𝐺s {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) = (𝐺s {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}))
2 eqidd 2729 . 2 (𝜑 → (0g𝐺) = (0g𝐺))
3 eqidd 2729 . 2 (𝜑 → (+g𝐺) = (+g𝐺))
4 ssrab2 4073 . . . 4 {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ⊆ 𝐵
54a1i 11 . . 3 (𝜑 → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ⊆ 𝐵)
6 nsgmgclem.b . . 3 𝐵 = (Base‘𝐺)
75, 6sseqtrdi 4028 . 2 (𝜑 → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ⊆ (Base‘𝐺))
8 sneq 4634 . . . . 5 (𝑎 = (0g𝐺) → {𝑎} = {(0g𝐺)})
98oveq1d 7429 . . . 4 (𝑎 = (0g𝐺) → ({𝑎} 𝑁) = ({(0g𝐺)} 𝑁))
109eleq1d 2814 . . 3 (𝑎 = (0g𝐺) → (({𝑎} 𝑁) ∈ 𝐹 ↔ ({(0g𝐺)} 𝑁) ∈ 𝐹))
11 nsgmgclem.n . . . . . 6 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
12 nsgsubg 19106 . . . . . 6 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
1311, 12syl 17 . . . . 5 (𝜑𝑁 ∈ (SubGrp‘𝐺))
14 subgrcl 19079 . . . . 5 (𝑁 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
1513, 14syl 17 . . . 4 (𝜑𝐺 ∈ Grp)
16 eqid 2728 . . . . 5 (0g𝐺) = (0g𝐺)
176, 16grpidcl 18915 . . . 4 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
1815, 17syl 17 . . 3 (𝜑 → (0g𝐺) ∈ 𝐵)
19 nsgmgclem.p . . . . . 6 = (LSSum‘𝐺)
2016, 19lsm02 19620 . . . . 5 (𝑁 ∈ (SubGrp‘𝐺) → ({(0g𝐺)} 𝑁) = 𝑁)
2113, 20syl 17 . . . 4 (𝜑 → ({(0g𝐺)} 𝑁) = 𝑁)
22 nsgmgclem.f . . . . 5 (𝜑𝐹 ∈ (SubGrp‘𝑄))
23 nsgmgclem.q . . . . . 6 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
2423nsgqus0 33114 . . . . 5 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → 𝑁𝐹)
2511, 22, 24syl2anc 583 . . . 4 (𝜑𝑁𝐹)
2621, 25eqeltrd 2829 . . 3 (𝜑 → ({(0g𝐺)} 𝑁) ∈ 𝐹)
2710, 18, 26elrabd 3683 . 2 (𝜑 → (0g𝐺) ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹})
28 sneq 4634 . . . . . 6 (𝑎 = (𝑥(+g𝐺)𝑦) → {𝑎} = {(𝑥(+g𝐺)𝑦)})
2928oveq1d 7429 . . . . 5 (𝑎 = (𝑥(+g𝐺)𝑦) → ({𝑎} 𝑁) = ({(𝑥(+g𝐺)𝑦)} 𝑁))
3029eleq1d 2814 . . . 4 (𝑎 = (𝑥(+g𝐺)𝑦) → (({𝑎} 𝑁) ∈ 𝐹 ↔ ({(𝑥(+g𝐺)𝑦)} 𝑁) ∈ 𝐹))
3115ad2antrr 725 . . . . 5 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → 𝐺 ∈ Grp)
32 elrabi 3675 . . . . . 6 (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} → 𝑥𝐵)
3332ad2antlr 726 . . . . 5 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → 𝑥𝐵)
34 elrabi 3675 . . . . . 6 (𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} → 𝑦𝐵)
3534adantl 481 . . . . 5 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → 𝑦𝐵)
36 eqid 2728 . . . . . 6 (+g𝐺) = (+g𝐺)
376, 36grpcl 18891 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
3831, 33, 35, 37syl3anc 1369 . . . 4 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
3913ad2antrr 725 . . . . . 6 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → 𝑁 ∈ (SubGrp‘𝐺))
406, 19, 39, 38quslsm 33109 . . . . 5 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁) = ({(𝑥(+g𝐺)𝑦)} 𝑁))
4111ad2antrr 725 . . . . . . 7 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → 𝑁 ∈ (NrmSGrp‘𝐺))
42 eqid 2728 . . . . . . . 8 (+g𝑄) = (+g𝑄)
4323, 6, 36, 42qusadd 19136 . . . . . . 7 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑥𝐵𝑦𝐵) → ([𝑥](𝐺 ~QG 𝑁)(+g𝑄)[𝑦](𝐺 ~QG 𝑁)) = [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁))
4441, 33, 35, 43syl3anc 1369 . . . . . 6 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → ([𝑥](𝐺 ~QG 𝑁)(+g𝑄)[𝑦](𝐺 ~QG 𝑁)) = [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁))
4522ad2antrr 725 . . . . . . 7 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → 𝐹 ∈ (SubGrp‘𝑄))
466, 19, 39, 33quslsm 33109 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} 𝑁))
47 sneq 4634 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → {𝑎} = {𝑥})
4847oveq1d 7429 . . . . . . . . . . . 12 (𝑎 = 𝑥 → ({𝑎} 𝑁) = ({𝑥} 𝑁))
4948eleq1d 2814 . . . . . . . . . . 11 (𝑎 = 𝑥 → (({𝑎} 𝑁) ∈ 𝐹 ↔ ({𝑥} 𝑁) ∈ 𝐹))
5049elrab 3681 . . . . . . . . . 10 (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ↔ (𝑥𝐵 ∧ ({𝑥} 𝑁) ∈ 𝐹))
5150simprbi 496 . . . . . . . . 9 (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} → ({𝑥} 𝑁) ∈ 𝐹)
5251ad2antlr 726 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → ({𝑥} 𝑁) ∈ 𝐹)
5346, 52eqeltrd 2829 . . . . . . 7 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → [𝑥](𝐺 ~QG 𝑁) ∈ 𝐹)
546, 19, 39, 35quslsm 33109 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → [𝑦](𝐺 ~QG 𝑁) = ({𝑦} 𝑁))
55 sneq 4634 . . . . . . . . . . . . 13 (𝑎 = 𝑦 → {𝑎} = {𝑦})
5655oveq1d 7429 . . . . . . . . . . . 12 (𝑎 = 𝑦 → ({𝑎} 𝑁) = ({𝑦} 𝑁))
5756eleq1d 2814 . . . . . . . . . . 11 (𝑎 = 𝑦 → (({𝑎} 𝑁) ∈ 𝐹 ↔ ({𝑦} 𝑁) ∈ 𝐹))
5857elrab 3681 . . . . . . . . . 10 (𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ↔ (𝑦𝐵 ∧ ({𝑦} 𝑁) ∈ 𝐹))
5958simprbi 496 . . . . . . . . 9 (𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} → ({𝑦} 𝑁) ∈ 𝐹)
6059adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → ({𝑦} 𝑁) ∈ 𝐹)
6154, 60eqeltrd 2829 . . . . . . 7 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → [𝑦](𝐺 ~QG 𝑁) ∈ 𝐹)
6242subgcl 19084 . . . . . . 7 ((𝐹 ∈ (SubGrp‘𝑄) ∧ [𝑥](𝐺 ~QG 𝑁) ∈ 𝐹 ∧ [𝑦](𝐺 ~QG 𝑁) ∈ 𝐹) → ([𝑥](𝐺 ~QG 𝑁)(+g𝑄)[𝑦](𝐺 ~QG 𝑁)) ∈ 𝐹)
6345, 53, 61, 62syl3anc 1369 . . . . . 6 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → ([𝑥](𝐺 ~QG 𝑁)(+g𝑄)[𝑦](𝐺 ~QG 𝑁)) ∈ 𝐹)
6444, 63eqeltrrd 2830 . . . . 5 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁) ∈ 𝐹)
6540, 64eqeltrrd 2830 . . . 4 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → ({(𝑥(+g𝐺)𝑦)} 𝑁) ∈ 𝐹)
6630, 38, 65elrabd 3683 . . 3 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → (𝑥(+g𝐺)𝑦) ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹})
67663impa 1108 . 2 ((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → (𝑥(+g𝐺)𝑦) ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹})
68 sneq 4634 . . . . . . 7 (𝑎 = ((invg𝐺)‘𝑥) → {𝑎} = {((invg𝐺)‘𝑥)})
6968oveq1d 7429 . . . . . 6 (𝑎 = ((invg𝐺)‘𝑥) → ({𝑎} 𝑁) = ({((invg𝐺)‘𝑥)} 𝑁))
7069eleq1d 2814 . . . . 5 (𝑎 = ((invg𝐺)‘𝑥) → (({𝑎} 𝑁) ∈ 𝐹 ↔ ({((invg𝐺)‘𝑥)} 𝑁) ∈ 𝐹))
71 eqid 2728 . . . . . . . 8 (invg𝐺) = (invg𝐺)
726, 71grpinvcl 18937 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
7315, 72sylan 579 . . . . . 6 ((𝜑𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
7473adantr 480 . . . . 5 (((𝜑𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝐹) → ((invg𝐺)‘𝑥) ∈ 𝐵)
75 eqid 2728 . . . . . . . . . 10 (invg𝑄) = (invg𝑄)
7623, 6, 71, 75qusinv 19138 . . . . . . . . 9 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑥𝐵) → ((invg𝑄)‘[𝑥](𝐺 ~QG 𝑁)) = [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁))
7711, 76sylan 579 . . . . . . . 8 ((𝜑𝑥𝐵) → ((invg𝑄)‘[𝑥](𝐺 ~QG 𝑁)) = [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁))
7813adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝐵) → 𝑁 ∈ (SubGrp‘𝐺))
79 simpr 484 . . . . . . . . . 10 ((𝜑𝑥𝐵) → 𝑥𝐵)
806, 19, 78, 79quslsm 33109 . . . . . . . . 9 ((𝜑𝑥𝐵) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} 𝑁))
8180fveq2d 6895 . . . . . . . 8 ((𝜑𝑥𝐵) → ((invg𝑄)‘[𝑥](𝐺 ~QG 𝑁)) = ((invg𝑄)‘({𝑥} 𝑁)))
826, 19, 78, 73quslsm 33109 . . . . . . . 8 ((𝜑𝑥𝐵) → [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁) = ({((invg𝐺)‘𝑥)} 𝑁))
8377, 81, 823eqtr3d 2776 . . . . . . 7 ((𝜑𝑥𝐵) → ((invg𝑄)‘({𝑥} 𝑁)) = ({((invg𝐺)‘𝑥)} 𝑁))
8483adantr 480 . . . . . 6 (((𝜑𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝐹) → ((invg𝑄)‘({𝑥} 𝑁)) = ({((invg𝐺)‘𝑥)} 𝑁))
8522ad2antrr 725 . . . . . . 7 (((𝜑𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝐹) → 𝐹 ∈ (SubGrp‘𝑄))
86 simpr 484 . . . . . . 7 (((𝜑𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝐹) → ({𝑥} 𝑁) ∈ 𝐹)
8775subginvcl 19083 . . . . . . 7 ((𝐹 ∈ (SubGrp‘𝑄) ∧ ({𝑥} 𝑁) ∈ 𝐹) → ((invg𝑄)‘({𝑥} 𝑁)) ∈ 𝐹)
8885, 86, 87syl2anc 583 . . . . . 6 (((𝜑𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝐹) → ((invg𝑄)‘({𝑥} 𝑁)) ∈ 𝐹)
8984, 88eqeltrrd 2830 . . . . 5 (((𝜑𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝐹) → ({((invg𝐺)‘𝑥)} 𝑁) ∈ 𝐹)
9070, 74, 89elrabd 3683 . . . 4 (((𝜑𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝐹) → ((invg𝐺)‘𝑥) ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹})
9190anasss 466 . . 3 ((𝜑 ∧ (𝑥𝐵 ∧ ({𝑥} 𝑁) ∈ 𝐹)) → ((invg𝐺)‘𝑥) ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹})
9250, 91sylan2b 593 . 2 ((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → ((invg𝐺)‘𝑥) ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹})
931, 2, 3, 7, 27, 67, 92, 15issubgrpd2 19090 1 (𝜑 → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  {crab 3428  wss 3945  {csn 4624  cfv 6542  (class class class)co 7414  [cec 8716  Basecbs 17173  s cress 17202  +gcplusg 17226  0gc0g 17414   /s cqus 17480  Grpcgrp 18883  invgcminusg 18884  SubGrpcsubg 19068  NrmSGrpcnsg 19069   ~QG cqg 19070  LSSumclsm 19582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-ec 8720  df-qs 8724  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9459  df-inf 9460  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-fz 13511  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-0g 17416  df-imas 17483  df-qus 17484  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-submnd 18734  df-grp 18886  df-minusg 18887  df-subg 19071  df-nsg 19072  df-eqg 19073  df-oppg 19290  df-lsm 19584
This theorem is referenced by:  nsgmgc  33116  nsgqusf1olem2  33118  nsgqusf1olem3  33119
  Copyright terms: Public domain W3C validator
OSZAR »