![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lbfzo0 | Structured version Visualization version GIF version |
Description: An integer is strictly greater than zero iff it is a member of ℕ. (Contributed by Mario Carneiro, 29-Sep-2015.) |
Ref | Expression |
---|---|
lbfzo0 | ⊢ (0 ∈ (0..^𝐴) ↔ 𝐴 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12593 | . . 3 ⊢ 0 ∈ ℤ | |
2 | 3anass 1093 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 < 𝐴) ↔ (0 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 0 < 𝐴))) | |
3 | 1, 2 | mpbiran 708 | . 2 ⊢ ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 < 𝐴) ↔ (𝐴 ∈ ℤ ∧ 0 < 𝐴)) |
4 | fzolb 13664 | . 2 ⊢ (0 ∈ (0..^𝐴) ↔ (0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 < 𝐴)) | |
5 | elnnz 12592 | . 2 ⊢ (𝐴 ∈ ℕ ↔ (𝐴 ∈ ℤ ∧ 0 < 𝐴)) | |
6 | 3, 4, 5 | 3bitr4i 303 | 1 ⊢ (0 ∈ (0..^𝐴) ↔ 𝐴 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2099 class class class wbr 5142 (class class class)co 7414 0cc0 11132 < clt 11272 ℕcn 12236 ℤcz 12582 ..^cfzo 13653 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-n0 12497 df-z 12583 df-uz 12847 df-fz 13511 df-fzo 13654 |
This theorem is referenced by: elfzo0 13699 fzo0n0 13710 fzo0end 13750 wrdsymb1 14529 ccatfv0 14559 ccat1st1st 14604 ccat2s1p1 14605 lswccats1fst 14611 swrdfv0 14625 pfxn0 14662 pfxfv0 14668 pfxtrcfv0 14670 pfx1 14679 cats1un 14697 revs1 14741 repswfsts 14757 cshwidx0mod 14781 cshw1 14798 scshwfzeqfzo 14803 cats1fvn 14835 pfx2 14924 nnnn0modprm0 16768 cshwrepswhash1 17065 efgsval2 19681 efgs1b 19684 efgsp1 19685 efgsres 19686 efgredlemd 19692 efgredlem 19695 efgrelexlemb 19698 pgpfaclem1 20031 dchrisumlem3 27417 tgcgr4 28328 wlkonl1iedg 29472 usgr2pthlem 29570 pthdlem2lem 29574 lfgrn1cycl 29609 uspgrn2crct 29612 crctcshwlkn0lem6 29619 0enwwlksnge1 29668 wwlksm1edg 29685 wwlksnwwlksnon 29719 clwlkclwwlklem2 29803 clwlkclwwlkf1lem3 29809 clwwlkel 29849 clwwlkf1 29852 umgr2cwwk2dif 29867 clwwlknonwwlknonb 29909 upgr3v3e3cycl 29983 upgr4cycl4dv4e 29988 2clwwlk2clwwlk 30153 cycpmco2lem4 32844 cycpmco2lem5 32845 cycpmrn 32858 lmatcl 33411 fib0 34013 signsvtn0 34196 reprpmtf1o 34252 poimirlem3 37090 amgm2d 43622 amgm3d 43623 amgm4d 43624 iccpartigtl 46757 iccpartlt 46758 amgmw2d 48231 |
Copyright terms: Public domain | W3C validator |