![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > revs1 | Structured version Visualization version GIF version |
Description: Singleton words are their own reverses. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
revs1 | ⊢ (reverse‘〈“𝑆”〉) = 〈“𝑆”〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1cli 14588 | . . . . 5 ⊢ 〈“𝑆”〉 ∈ Word V | |
2 | s1len 14589 | . . . . . . 7 ⊢ (♯‘〈“𝑆”〉) = 1 | |
3 | 1nn 12254 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
4 | 2, 3 | eqeltri 2825 | . . . . . 6 ⊢ (♯‘〈“𝑆”〉) ∈ ℕ |
5 | lbfzo0 13705 | . . . . . 6 ⊢ (0 ∈ (0..^(♯‘〈“𝑆”〉)) ↔ (♯‘〈“𝑆”〉) ∈ ℕ) | |
6 | 4, 5 | mpbir 230 | . . . . 5 ⊢ 0 ∈ (0..^(♯‘〈“𝑆”〉)) |
7 | revfv 14746 | . . . . 5 ⊢ ((〈“𝑆”〉 ∈ Word V ∧ 0 ∈ (0..^(♯‘〈“𝑆”〉))) → ((reverse‘〈“𝑆”〉)‘0) = (〈“𝑆”〉‘(((♯‘〈“𝑆”〉) − 1) − 0))) | |
8 | 1, 6, 7 | mp2an 691 | . . . 4 ⊢ ((reverse‘〈“𝑆”〉)‘0) = (〈“𝑆”〉‘(((♯‘〈“𝑆”〉) − 1) − 0)) |
9 | 2 | oveq1i 7430 | . . . . . . . . 9 ⊢ ((♯‘〈“𝑆”〉) − 1) = (1 − 1) |
10 | 1m1e0 12315 | . . . . . . . . 9 ⊢ (1 − 1) = 0 | |
11 | 9, 10 | eqtri 2756 | . . . . . . . 8 ⊢ ((♯‘〈“𝑆”〉) − 1) = 0 |
12 | 11 | oveq1i 7430 | . . . . . . 7 ⊢ (((♯‘〈“𝑆”〉) − 1) − 0) = (0 − 0) |
13 | 0m0e0 12363 | . . . . . . 7 ⊢ (0 − 0) = 0 | |
14 | 12, 13 | eqtri 2756 | . . . . . 6 ⊢ (((♯‘〈“𝑆”〉) − 1) − 0) = 0 |
15 | 14 | fveq2i 6900 | . . . . 5 ⊢ (〈“𝑆”〉‘(((♯‘〈“𝑆”〉) − 1) − 0)) = (〈“𝑆”〉‘0) |
16 | ids1 14580 | . . . . . . 7 ⊢ 〈“𝑆”〉 = 〈“( I ‘𝑆)”〉 | |
17 | 16 | fveq1i 6898 | . . . . . 6 ⊢ (〈“𝑆”〉‘0) = (〈“( I ‘𝑆)”〉‘0) |
18 | fvex 6910 | . . . . . . 7 ⊢ ( I ‘𝑆) ∈ V | |
19 | s1fv 14593 | . . . . . . 7 ⊢ (( I ‘𝑆) ∈ V → (〈“( I ‘𝑆)”〉‘0) = ( I ‘𝑆)) | |
20 | 18, 19 | ax-mp 5 | . . . . . 6 ⊢ (〈“( I ‘𝑆)”〉‘0) = ( I ‘𝑆) |
21 | 17, 20 | eqtri 2756 | . . . . 5 ⊢ (〈“𝑆”〉‘0) = ( I ‘𝑆) |
22 | 15, 21 | eqtri 2756 | . . . 4 ⊢ (〈“𝑆”〉‘(((♯‘〈“𝑆”〉) − 1) − 0)) = ( I ‘𝑆) |
23 | 8, 22 | eqtri 2756 | . . 3 ⊢ ((reverse‘〈“𝑆”〉)‘0) = ( I ‘𝑆) |
24 | s1eq 14583 | . . 3 ⊢ (((reverse‘〈“𝑆”〉)‘0) = ( I ‘𝑆) → 〈“((reverse‘〈“𝑆”〉)‘0)”〉 = 〈“( I ‘𝑆)”〉) | |
25 | 23, 24 | ax-mp 5 | . 2 ⊢ 〈“((reverse‘〈“𝑆”〉)‘0)”〉 = 〈“( I ‘𝑆)”〉 |
26 | revcl 14744 | . . . 4 ⊢ (〈“𝑆”〉 ∈ Word V → (reverse‘〈“𝑆”〉) ∈ Word V) | |
27 | 1, 26 | ax-mp 5 | . . 3 ⊢ (reverse‘〈“𝑆”〉) ∈ Word V |
28 | revlen 14745 | . . . . 5 ⊢ (〈“𝑆”〉 ∈ Word V → (♯‘(reverse‘〈“𝑆”〉)) = (♯‘〈“𝑆”〉)) | |
29 | 1, 28 | ax-mp 5 | . . . 4 ⊢ (♯‘(reverse‘〈“𝑆”〉)) = (♯‘〈“𝑆”〉) |
30 | 29, 2 | eqtri 2756 | . . 3 ⊢ (♯‘(reverse‘〈“𝑆”〉)) = 1 |
31 | eqs1 14595 | . . 3 ⊢ (((reverse‘〈“𝑆”〉) ∈ Word V ∧ (♯‘(reverse‘〈“𝑆”〉)) = 1) → (reverse‘〈“𝑆”〉) = 〈“((reverse‘〈“𝑆”〉)‘0)”〉) | |
32 | 27, 30, 31 | mp2an 691 | . 2 ⊢ (reverse‘〈“𝑆”〉) = 〈“((reverse‘〈“𝑆”〉)‘0)”〉 |
33 | 25, 32, 16 | 3eqtr4i 2766 | 1 ⊢ (reverse‘〈“𝑆”〉) = 〈“𝑆”〉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 Vcvv 3471 I cid 5575 ‘cfv 6548 (class class class)co 7420 0cc0 11139 1c1 11140 − cmin 11475 ℕcn 12243 ..^cfzo 13660 ♯chash 14322 Word cword 14497 〈“cs1 14578 reversecreverse 14741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-n0 12504 df-z 12590 df-uz 12854 df-fz 13518 df-fzo 13661 df-hash 14323 df-word 14498 df-s1 14579 df-reverse 14742 |
This theorem is referenced by: gsumwrev 19320 efginvrel2 19682 vrgpinv 19724 |
Copyright terms: Public domain | W3C validator |