![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem30 | Structured version Visualization version GIF version |
Description: Lemma for lcfr 41090. (Contributed by NM, 6-Mar-2015.) |
Ref | Expression |
---|---|
lcfrlem17.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcfrlem17.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcfrlem17.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcfrlem17.v | ⊢ 𝑉 = (Base‘𝑈) |
lcfrlem17.p | ⊢ + = (+g‘𝑈) |
lcfrlem17.z | ⊢ 0 = (0g‘𝑈) |
lcfrlem17.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lcfrlem17.a | ⊢ 𝐴 = (LSAtoms‘𝑈) |
lcfrlem17.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfrlem17.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
lcfrlem17.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
lcfrlem17.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
lcfrlem22.b | ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) |
lcfrlem24.t | ⊢ · = ( ·𝑠 ‘𝑈) |
lcfrlem24.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lcfrlem24.q | ⊢ 𝑄 = (0g‘𝑆) |
lcfrlem24.r | ⊢ 𝑅 = (Base‘𝑆) |
lcfrlem24.j | ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) |
lcfrlem24.ib | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
lcfrlem24.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcfrlem25.d | ⊢ 𝐷 = (LDual‘𝑈) |
lcfrlem28.jn | ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) |
lcfrlem29.i | ⊢ 𝐹 = (invr‘𝑆) |
lcfrlem30.m | ⊢ − = (-g‘𝐷) |
lcfrlem30.c | ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) |
Ref | Expression |
---|---|
lcfrlem30 | ⊢ (𝜑 → 𝐶 ∈ (LFnl‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem30.c | . 2 ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) | |
2 | eqid 2728 | . . 3 ⊢ (LFnl‘𝑈) = (LFnl‘𝑈) | |
3 | lcfrlem25.d | . . 3 ⊢ 𝐷 = (LDual‘𝑈) | |
4 | lcfrlem30.m | . . 3 ⊢ − = (-g‘𝐷) | |
5 | lcfrlem17.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | lcfrlem17.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
7 | lcfrlem17.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
8 | 5, 6, 7 | dvhlmod 40615 | . . 3 ⊢ (𝜑 → 𝑈 ∈ LMod) |
9 | lcfrlem17.o | . . . 4 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
10 | lcfrlem17.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
11 | lcfrlem17.p | . . . 4 ⊢ + = (+g‘𝑈) | |
12 | lcfrlem24.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑈) | |
13 | lcfrlem24.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑈) | |
14 | lcfrlem24.r | . . . 4 ⊢ 𝑅 = (Base‘𝑆) | |
15 | lcfrlem17.z | . . . 4 ⊢ 0 = (0g‘𝑈) | |
16 | lcfrlem24.l | . . . 4 ⊢ 𝐿 = (LKer‘𝑈) | |
17 | eqid 2728 | . . . 4 ⊢ (0g‘𝐷) = (0g‘𝐷) | |
18 | eqid 2728 | . . . 4 ⊢ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
19 | lcfrlem24.j | . . . 4 ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) | |
20 | lcfrlem17.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
21 | 5, 9, 6, 10, 11, 12, 13, 14, 15, 2, 16, 3, 17, 18, 19, 7, 20 | lcfrlem10 41057 | . . 3 ⊢ (𝜑 → (𝐽‘𝑋) ∈ (LFnl‘𝑈)) |
22 | eqid 2728 | . . . 4 ⊢ ( ·𝑠 ‘𝐷) = ( ·𝑠 ‘𝐷) | |
23 | lcfrlem17.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
24 | lcfrlem17.a | . . . . 5 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
25 | lcfrlem17.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
26 | lcfrlem17.ne | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
27 | lcfrlem22.b | . . . . 5 ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) | |
28 | lcfrlem24.q | . . . . 5 ⊢ 𝑄 = (0g‘𝑆) | |
29 | lcfrlem24.ib | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝐵) | |
30 | lcfrlem28.jn | . . . . 5 ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) | |
31 | lcfrlem29.i | . . . . 5 ⊢ 𝐹 = (invr‘𝑆) | |
32 | 5, 9, 6, 10, 11, 15, 23, 24, 7, 20, 25, 26, 27, 12, 13, 28, 14, 19, 29, 16, 3, 30, 31 | lcfrlem29 41076 | . . . 4 ⊢ (𝜑 → ((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼)) ∈ 𝑅) |
33 | 5, 9, 6, 10, 11, 12, 13, 14, 15, 2, 16, 3, 17, 18, 19, 7, 25 | lcfrlem10 41057 | . . . 4 ⊢ (𝜑 → (𝐽‘𝑌) ∈ (LFnl‘𝑈)) |
34 | 2, 13, 14, 3, 22, 8, 32, 33 | ldualvscl 38643 | . . 3 ⊢ (𝜑 → (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌)) ∈ (LFnl‘𝑈)) |
35 | 2, 3, 4, 8, 21, 34 | ldualvsubcl 38660 | . 2 ⊢ (𝜑 → ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) ∈ (LFnl‘𝑈)) |
36 | 1, 35 | eqeltrid 2833 | 1 ⊢ (𝜑 → 𝐶 ∈ (LFnl‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 ∃wrex 3067 {crab 3430 ∖ cdif 3946 ∩ cin 3948 {csn 4632 {cpr 4634 ↦ cmpt 5235 ‘cfv 6553 ℩crio 7381 (class class class)co 7426 Basecbs 17187 +gcplusg 17240 .rcmulr 17241 Scalarcsca 17243 ·𝑠 cvsca 17244 0gc0g 17428 -gcsg 18899 invrcinvr 20333 LSpanclspn 20862 LSAtomsclsa 38478 LFnlclfn 38561 LKerclk 38589 LDualcld 38627 HLchlt 38854 LHypclh 39489 DVecHcdvh 40583 ocHcoch 40852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-riotaBAD 38457 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-iin 5003 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-of 7691 df-om 7877 df-1st 7999 df-2nd 8000 df-tpos 8238 df-undef 8285 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-map 8853 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-n0 12511 df-z 12597 df-uz 12861 df-fz 13525 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-ress 17217 df-plusg 17253 df-mulr 17254 df-sca 17256 df-vsca 17257 df-0g 17430 df-mre 17573 df-mrc 17574 df-acs 17576 df-proset 18294 df-poset 18312 df-plt 18329 df-lub 18345 df-glb 18346 df-join 18347 df-meet 18348 df-p0 18424 df-p1 18425 df-lat 18431 df-clat 18498 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-submnd 18748 df-grp 18900 df-minusg 18901 df-sbg 18902 df-subg 19085 df-cntz 19275 df-oppg 19304 df-lsm 19598 df-cmn 19744 df-abl 19745 df-mgp 20082 df-rng 20100 df-ur 20129 df-ring 20182 df-oppr 20280 df-dvdsr 20303 df-unit 20304 df-invr 20334 df-dvr 20347 df-drng 20633 df-lmod 20752 df-lss 20823 df-lsp 20863 df-lvec 20995 df-lsatoms 38480 df-lshyp 38481 df-lcv 38523 df-lfl 38562 df-ldual 38628 df-oposet 38680 df-ol 38682 df-oml 38683 df-covers 38770 df-ats 38771 df-atl 38802 df-cvlat 38826 df-hlat 38855 df-llines 39003 df-lplanes 39004 df-lvols 39005 df-lines 39006 df-psubsp 39008 df-pmap 39009 df-padd 39301 df-lhyp 39493 df-laut 39494 df-ldil 39609 df-ltrn 39610 df-trl 39664 df-tgrp 40248 df-tendo 40260 df-edring 40262 df-dveca 40508 df-disoa 40534 df-dvech 40584 df-dib 40644 df-dic 40678 df-dih 40734 df-doch 40853 df-djh 40900 |
This theorem is referenced by: lcfrlem35 41082 lcfrlem36 41083 |
Copyright terms: Public domain | W3C validator |