![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lediv2ad | Structured version Visualization version GIF version |
Description: Division of both sides of 'less than or equal to' into a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
rpaddcld.1 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
lediv2ad.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
lediv2ad.4 | ⊢ (𝜑 → 0 ≤ 𝐶) |
lediv2ad.5 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Ref | Expression |
---|---|
lediv2ad | ⊢ (𝜑 → (𝐶 / 𝐵) ≤ (𝐶 / 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | 1 | rpregt0d 13048 | . 2 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
3 | rpaddcld.1 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
4 | 3 | rpregt0d 13048 | . 2 ⊢ (𝜑 → (𝐵 ∈ ℝ ∧ 0 < 𝐵)) |
5 | lediv2ad.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
6 | lediv2ad.4 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐶) | |
7 | 5, 6 | jca 511 | . 2 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) |
8 | lediv2ad.5 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
9 | lediv2a 12132 | . 2 ⊢ ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴 ≤ 𝐵) → (𝐶 / 𝐵) ≤ (𝐶 / 𝐴)) | |
10 | 2, 4, 7, 8, 9 | syl31anc 1371 | 1 ⊢ (𝜑 → (𝐶 / 𝐵) ≤ (𝐶 / 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 class class class wbr 5142 (class class class)co 7414 ℝcr 11131 0cc0 11132 < clt 11272 ≤ cle 11273 / cdiv 11895 ℝ+crp 13000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-rp 13001 |
This theorem is referenced by: rlimno1 15626 lgamgulmlem2 26955 lgamgulmlem3 26956 lgamgulmlem5 26958 selberg3lem2 27484 pntrlog2bndlem2 27504 pntrlog2bndlem6a 27508 pntrlog2bnd 27510 aks4d1p1p7 41539 aks4d1p6 41546 ioodvbdlimc1lem2 45314 ioodvbdlimc2lem 45316 stirlinglem1 45456 stirlinglem10 45465 fourierdlem30 45519 |
Copyright terms: Public domain | W3C validator |