MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bnd Structured version   Visualization version   GIF version

Theorem pntrlog2bnd 27510
Description: A bound on 𝑅(𝑥)log↑2(𝑥). Equation 10.6.15 of [Shapiro], p. 431. (Contributed by Mario Carneiro, 1-Jun-2016.)
Hypothesis
Ref Expression
pntpbnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
pntrlog2bnd ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ∃𝑐 ∈ ℝ+𝑥 ∈ (1(,)+∞)((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ≤ 𝑐)
Distinct variable groups:   𝑥,𝑛,𝑐,𝑅   𝑎,𝑐,𝑛,𝑥,𝐴
Allowed substitution hint:   𝑅(𝑎)

Proof of Theorem pntrlog2bnd
Dummy variables 𝑖 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossre 13411 . . 3 (1(,)+∞) ⊆ ℝ
21a1i 11 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (1(,)+∞) ⊆ ℝ)
3 1red 11239 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 1 ∈ ℝ)
42sselda 3978 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ)
5 1rp 13004 . . . . . . . . . 10 1 ∈ ℝ+
65a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+)
7 1red 11239 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ)
8 eliooord 13409 . . . . . . . . . . . 12 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
98adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (1 < 𝑥𝑥 < +∞))
109simpld 494 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → 1 < 𝑥)
117, 4, 10ltled 11386 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥)
124, 6, 11rpgecld 13081 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+)
13 pntpbnd.r . . . . . . . . . 10 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
1413pntrf 27489 . . . . . . . . 9 𝑅:ℝ+⟶ℝ
1514ffvelcdmi 7087 . . . . . . . 8 (𝑥 ∈ ℝ+ → (𝑅𝑥) ∈ ℝ)
1612, 15syl 17 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℝ)
1716recnd 11266 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℂ)
1817abscld 15409 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘(𝑅𝑥)) ∈ ℝ)
1912relogcld 26550 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ)
2018, 19remulcld 11268 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℝ)
21 2re 12310 . . . . . . 7 2 ∈ ℝ
2221a1i 11 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈ ℝ)
234, 10rplogcld 26556 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ+)
2422, 23rerpdivcld 13073 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℝ)
25 fzfid 13964 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (1...(⌊‘(𝑥 / 𝐴))) ∈ Fin)
2612adantr 480 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑥 ∈ ℝ+)
27 elfznn 13556 . . . . . . . . . . . . 13 (𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴))) → 𝑛 ∈ ℕ)
2827adantl 481 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑛 ∈ ℕ)
2928nnrpd 13040 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑛 ∈ ℝ+)
3026, 29rpdivcld 13059 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (𝑥 / 𝑛) ∈ ℝ+)
3114ffvelcdmi 7087 . . . . . . . . . 10 ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
3230, 31syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
3332recnd 11266 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ)
3433abscld 15409 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ)
3529relogcld 26550 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (log‘𝑛) ∈ ℝ)
3634, 35remulcld 11268 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
3725, 36fsumrecl 15706 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
3824, 37remulcld 11268 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℝ)
3920, 38resubcld 11666 . . 3 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ∈ ℝ)
4039, 12rerpdivcld 13073 . 2 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ∈ ℝ)
4113pntrmax 27490 . . 3 𝑐 ∈ ℝ+𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐
42 eqid 2728 . . . . 5 (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
43 eqid 2728 . . . . 5 (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0)) = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0))
44 simprl 770 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐)) → 𝑐 ∈ ℝ+)
45 simprr 772 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐)) → ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐)
46 simpll 766 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐)) → 𝐴 ∈ ℝ)
47 simplr 768 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐)) → 1 ≤ 𝐴)
4842, 13, 43, 44, 45, 46, 47pntrlog2bndlem6 27509 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐)) → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1))
4948rexlimdvaa 3152 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (∃𝑐 ∈ ℝ+𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1)))
5041, 49mpi 20 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1))
51 simprl 770 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 𝑦 ∈ ℝ)
52 chpcl 27049 . . . . 5 (𝑦 ∈ ℝ → (ψ‘𝑦) ∈ ℝ)
5351, 52syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (ψ‘𝑦) ∈ ℝ)
5453, 51readdcld 11267 . . 3 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → ((ψ‘𝑦) + 𝑦) ∈ ℝ)
555a1i 11 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 1 ∈ ℝ+)
56 simprr 772 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 1 ≤ 𝑦)
5751, 55, 56rpgecld 13081 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 𝑦 ∈ ℝ+)
5857relogcld 26550 . . 3 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (log‘𝑦) ∈ ℝ)
5954, 58remulcld 11268 . 2 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (((ψ‘𝑦) + 𝑦) · (log‘𝑦)) ∈ ℝ)
6040adantr 480 . . 3 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ∈ ℝ)
6153ad2ant2r 746 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (ψ‘𝑦) ∈ ℝ)
62 simprll 778 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℝ)
6361, 62readdcld 11267 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((ψ‘𝑦) + 𝑦) ∈ ℝ)
6457ad2ant2r 746 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℝ+)
6564relogcld 26550 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑦) ∈ ℝ)
6663, 65remulcld 11268 . . . 4 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (((ψ‘𝑦) + 𝑦) · (log‘𝑦)) ∈ ℝ)
6712adantr 480 . . . 4 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℝ+)
6866, 67rerpdivcld 13073 . . 3 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((ψ‘𝑦) + 𝑦) · (log‘𝑦)) / 𝑥) ∈ ℝ)
6916adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (𝑅𝑥) ∈ ℝ)
7069recnd 11266 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (𝑅𝑥) ∈ ℂ)
7170abscld 15409 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(𝑅𝑥)) ∈ ℝ)
7267relogcld 26550 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑥) ∈ ℝ)
7371, 72remulcld 11268 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℝ)
7424adantr 480 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (2 / (log‘𝑥)) ∈ ℝ)
7537adantr 480 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
7674, 75remulcld 11268 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℝ)
7773, 76resubcld 11666 . . . 4 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ∈ ℝ)
7821a1i 11 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 2 ∈ ℝ)
794adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℝ)
8010adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 1 < 𝑥)
8179, 80rplogcld 26556 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑥) ∈ ℝ+)
82 2rp 13005 . . . . . . . . . 10 2 ∈ ℝ+
8382a1i 11 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 2 ∈ ℝ+)
8483rpge0d 13046 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ 2)
8578, 81, 84divge0d 13082 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (2 / (log‘𝑥)))
86 fzfid 13964 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (1...(⌊‘(𝑥 / 𝐴))) ∈ Fin)
8736adantlr 714 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
8833adantlr 714 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ)
8988abscld 15409 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ)
9029adantlr 714 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑛 ∈ ℝ+)
9190relogcld 26550 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (log‘𝑛) ∈ ℝ)
9288absge0d 15417 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 0 ≤ (abs‘(𝑅‘(𝑥 / 𝑛))))
9390rpred 13042 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑛 ∈ ℝ)
9427adantl 481 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑛 ∈ ℕ)
9594nnge1d 12284 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 1 ≤ 𝑛)
9693, 95logge0d 26557 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 0 ≤ (log‘𝑛))
9789, 91, 92, 96mulge0d 11815 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 0 ≤ ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))
9886, 87, 97fsumge0 15767 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))
9974, 75, 85, 98mulge0d 11815 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))
10073, 76subge02d 11830 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (0 ≤ ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ↔ (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ≤ ((abs‘(𝑅𝑥)) · (log‘𝑥))))
10199, 100mpbid 231 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ≤ ((abs‘(𝑅𝑥)) · (log‘𝑥)))
10270absge0d 15417 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (abs‘(𝑅𝑥)))
10381rpge0d 13046 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (log‘𝑥))
104 chpcl 27049 . . . . . . . . 9 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
10579, 104syl 17 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (ψ‘𝑥) ∈ ℝ)
106105, 79readdcld 11267 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((ψ‘𝑥) + 𝑥) ∈ ℝ)
10713pntrval 27488 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑅𝑥) = ((ψ‘𝑥) − 𝑥))
10867, 107syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (𝑅𝑥) = ((ψ‘𝑥) − 𝑥))
109108fveq2d 6895 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(𝑅𝑥)) = (abs‘((ψ‘𝑥) − 𝑥)))
110105recnd 11266 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (ψ‘𝑥) ∈ ℂ)
11179recnd 11266 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℂ)
112110, 111abs2dif2d 15431 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘((ψ‘𝑥) − 𝑥)) ≤ ((abs‘(ψ‘𝑥)) + (abs‘𝑥)))
113 chpge0 27051 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 0 ≤ (ψ‘𝑥))
11479, 113syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (ψ‘𝑥))
115105, 114absidd 15395 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(ψ‘𝑥)) = (ψ‘𝑥))
11667rpge0d 13046 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ 𝑥)
11779, 116absidd 15395 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘𝑥) = 𝑥)
118115, 117oveq12d 7432 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((abs‘(ψ‘𝑥)) + (abs‘𝑥)) = ((ψ‘𝑥) + 𝑥))
119112, 118breqtrd 5168 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘((ψ‘𝑥) − 𝑥)) ≤ ((ψ‘𝑥) + 𝑥))
120109, 119eqbrtrd 5164 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(𝑅𝑥)) ≤ ((ψ‘𝑥) + 𝑥))
121 simprr 772 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 < 𝑦)
12279, 62, 121ltled 11386 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥𝑦)
123 chpwordi 27082 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥𝑦) → (ψ‘𝑥) ≤ (ψ‘𝑦))
12479, 62, 122, 123syl3anc 1369 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (ψ‘𝑥) ≤ (ψ‘𝑦))
125105, 79, 61, 62, 124, 122le2addd 11857 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((ψ‘𝑥) + 𝑥) ≤ ((ψ‘𝑦) + 𝑦))
12671, 106, 63, 120, 125letrd 11395 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(𝑅𝑥)) ≤ ((ψ‘𝑦) + 𝑦))
12767, 64logled 26554 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (𝑥𝑦 ↔ (log‘𝑥) ≤ (log‘𝑦)))
128122, 127mpbid 231 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑥) ≤ (log‘𝑦))
12971, 63, 72, 65, 102, 103, 126, 128lemul12ad 12180 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ≤ (((ψ‘𝑦) + 𝑦) · (log‘𝑦)))
13077, 73, 66, 101, 129letrd 11395 . . . 4 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ≤ (((ψ‘𝑦) + 𝑦) · (log‘𝑦)))
13177, 66, 67, 130lediv1dd 13100 . . 3 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ≤ ((((ψ‘𝑦) + 𝑦) · (log‘𝑦)) / 𝑥))
1325a1i 11 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 1 ∈ ℝ+)
133 chpge0 27051 . . . . . . . 8 (𝑦 ∈ ℝ → 0 ≤ (ψ‘𝑦))
13462, 133syl 17 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (ψ‘𝑦))
13564rpge0d 13046 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ 𝑦)
13661, 62, 134, 135addge0d 11814 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ ((ψ‘𝑦) + 𝑦))
137 simprlr 779 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 1 ≤ 𝑦)
13862, 137logge0d 26557 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (log‘𝑦))
13963, 65, 136, 138mulge0d 11815 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (((ψ‘𝑦) + 𝑦) · (log‘𝑦)))
14011adantr 480 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 1 ≤ 𝑥)
141132, 67, 66, 139, 140lediv2ad 13064 . . . 4 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((ψ‘𝑦) + 𝑦) · (log‘𝑦)) / 𝑥) ≤ ((((ψ‘𝑦) + 𝑦) · (log‘𝑦)) / 1))
14261recnd 11266 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (ψ‘𝑦) ∈ ℂ)
14362recnd 11266 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℂ)
144142, 143addcld 11257 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((ψ‘𝑦) + 𝑦) ∈ ℂ)
14565recnd 11266 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑦) ∈ ℂ)
146144, 145mulcld 11258 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (((ψ‘𝑦) + 𝑦) · (log‘𝑦)) ∈ ℂ)
147146div1d 12006 . . . 4 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((ψ‘𝑦) + 𝑦) · (log‘𝑦)) / 1) = (((ψ‘𝑦) + 𝑦) · (log‘𝑦)))
148141, 147breqtrd 5168 . . 3 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((ψ‘𝑦) + 𝑦) · (log‘𝑦)) / 𝑥) ≤ (((ψ‘𝑦) + 𝑦) · (log‘𝑦)))
14960, 68, 66, 131, 148letrd 11395 . 2 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ≤ (((ψ‘𝑦) + 𝑦) · (log‘𝑦)))
1502, 3, 40, 50, 59, 149lo1bddrp 15495 1 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ∃𝑐 ∈ ℝ+𝑥 ∈ (1(,)+∞)((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ≤ 𝑐)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wral 3057  wrex 3066  wss 3945  ifcif 4524   class class class wbr 5142  cmpt 5225  cfv 6542  (class class class)co 7414  cc 11130  cr 11131  0cc0 11132  1c1 11133   + caddc 11135   · cmul 11137  +∞cpnf 11269   < clt 11272  cle 11273  cmin 11468   / cdiv 11895  cn 12236  2c2 12291  +crp 13000  (,)cioo 13350  ...cfz 13510  cfl 13781  abscabs 15207  ≤𝑂(1)clo1 15457  Σcsu 15658  logclog 26481  Λcvma 27017  ψcchp 27018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210  ax-addf 11211
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-disj 5108  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8718  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9380  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9527  df-dju 9918  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-xnn0 12569  df-z 12583  df-dec 12702  df-uz 12847  df-q 12957  df-rp 13001  df-xneg 13118  df-xadd 13119  df-xmul 13120  df-ioo 13354  df-ioc 13355  df-ico 13356  df-icc 13357  df-fz 13511  df-fzo 13654  df-fl 13783  df-mod 13861  df-seq 13993  df-exp 14053  df-fac 14259  df-bc 14288  df-hash 14316  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15441  df-clim 15458  df-rlim 15459  df-o1 15460  df-lo1 15461  df-sum 15659  df-ef 16037  df-e 16038  df-sin 16039  df-cos 16040  df-tan 16041  df-pi 16042  df-dvds 16225  df-gcd 16463  df-prm 16636  df-pc 16799  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-rest 17397  df-topn 17398  df-0g 17416  df-gsum 17417  df-topgen 17418  df-pt 17419  df-prds 17422  df-xrs 17477  df-qtop 17482  df-imas 17483  df-xps 17485  df-mre 17559  df-mrc 17560  df-acs 17562  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-submnd 18734  df-mulg 19017  df-cntz 19261  df-cmn 19730  df-psmet 21264  df-xmet 21265  df-met 21266  df-bl 21267  df-mopn 21268  df-fbas 21269  df-fg 21270  df-cnfld 21273  df-top 22789  df-topon 22806  df-topsp 22828  df-bases 22842  df-cld 22916  df-ntr 22917  df-cls 22918  df-nei 22995  df-lp 23033  df-perf 23034  df-cn 23124  df-cnp 23125  df-haus 23212  df-cmp 23284  df-tx 23459  df-hmeo 23652  df-fil 23743  df-fm 23835  df-flim 23836  df-flf 23837  df-xms 24219  df-ms 24220  df-tms 24221  df-cncf 24791  df-limc 25788  df-dv 25789  df-ulm 26306  df-log 26483  df-cxp 26484  df-atan 26792  df-em 26918  df-cht 27022  df-vma 27023  df-chp 27024  df-ppi 27025  df-mu 27026
This theorem is referenced by:  pntlemp  27536
  Copyright terms: Public domain W3C validator
OSZAR »