![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmmod2 | Structured version Visualization version GIF version |
Description: Modular law dual for subgroup sum. Similar to part of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 8-Jan-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
lsmmod.p | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmmod2 | ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = ((𝑆 ∩ 𝑇) ⊕ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1190 | . . . . . 6 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → 𝑈 ∈ (SubGrp‘𝐺)) | |
2 | eqid 2728 | . . . . . . 7 ⊢ (oppg‘𝐺) = (oppg‘𝐺) | |
3 | 2 | oppgsubg 19324 | . . . . . 6 ⊢ (SubGrp‘𝐺) = (SubGrp‘(oppg‘𝐺)) |
4 | 1, 3 | eleqtrdi 2839 | . . . . 5 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → 𝑈 ∈ (SubGrp‘(oppg‘𝐺))) |
5 | simpl2 1189 | . . . . . 6 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → 𝑇 ∈ (SubGrp‘𝐺)) | |
6 | 5, 3 | eleqtrdi 2839 | . . . . 5 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → 𝑇 ∈ (SubGrp‘(oppg‘𝐺))) |
7 | simpl1 1188 | . . . . . 6 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺)) | |
8 | 7, 3 | eleqtrdi 2839 | . . . . 5 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → 𝑆 ∈ (SubGrp‘(oppg‘𝐺))) |
9 | simpr 483 | . . . . 5 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → 𝑈 ⊆ 𝑆) | |
10 | eqid 2728 | . . . . . 6 ⊢ (LSSum‘(oppg‘𝐺)) = (LSSum‘(oppg‘𝐺)) | |
11 | 10 | lsmmod 19637 | . . . . 5 ⊢ (((𝑈 ∈ (SubGrp‘(oppg‘𝐺)) ∧ 𝑇 ∈ (SubGrp‘(oppg‘𝐺)) ∧ 𝑆 ∈ (SubGrp‘(oppg‘𝐺))) ∧ 𝑈 ⊆ 𝑆) → (𝑈(LSSum‘(oppg‘𝐺))(𝑇 ∩ 𝑆)) = ((𝑈(LSSum‘(oppg‘𝐺))𝑇) ∩ 𝑆)) |
12 | 4, 6, 8, 9, 11 | syl31anc 1370 | . . . 4 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → (𝑈(LSSum‘(oppg‘𝐺))(𝑇 ∩ 𝑆)) = ((𝑈(LSSum‘(oppg‘𝐺))𝑇) ∩ 𝑆)) |
13 | 12 | eqcomd 2734 | . . 3 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → ((𝑈(LSSum‘(oppg‘𝐺))𝑇) ∩ 𝑆) = (𝑈(LSSum‘(oppg‘𝐺))(𝑇 ∩ 𝑆))) |
14 | incom 4203 | . . 3 ⊢ ((𝑈(LSSum‘(oppg‘𝐺))𝑇) ∩ 𝑆) = (𝑆 ∩ (𝑈(LSSum‘(oppg‘𝐺))𝑇)) | |
15 | incom 4203 | . . . 4 ⊢ (𝑇 ∩ 𝑆) = (𝑆 ∩ 𝑇) | |
16 | 15 | oveq2i 7437 | . . 3 ⊢ (𝑈(LSSum‘(oppg‘𝐺))(𝑇 ∩ 𝑆)) = (𝑈(LSSum‘(oppg‘𝐺))(𝑆 ∩ 𝑇)) |
17 | 13, 14, 16 | 3eqtr3g 2791 | . 2 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → (𝑆 ∩ (𝑈(LSSum‘(oppg‘𝐺))𝑇)) = (𝑈(LSSum‘(oppg‘𝐺))(𝑆 ∩ 𝑇))) |
18 | lsmmod.p | . . . 4 ⊢ ⊕ = (LSSum‘𝐺) | |
19 | 2, 18 | oppglsm 19604 | . . 3 ⊢ (𝑈(LSSum‘(oppg‘𝐺))𝑇) = (𝑇 ⊕ 𝑈) |
20 | 19 | ineq2i 4211 | . 2 ⊢ (𝑆 ∩ (𝑈(LSSum‘(oppg‘𝐺))𝑇)) = (𝑆 ∩ (𝑇 ⊕ 𝑈)) |
21 | 2, 18 | oppglsm 19604 | . 2 ⊢ (𝑈(LSSum‘(oppg‘𝐺))(𝑆 ∩ 𝑇)) = ((𝑆 ∩ 𝑇) ⊕ 𝑈) |
22 | 17, 20, 21 | 3eqtr3g 2791 | 1 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = ((𝑆 ∩ 𝑇) ⊕ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∩ cin 3948 ⊆ wss 3949 ‘cfv 6553 (class class class)co 7426 SubGrpcsubg 19082 oppgcoppg 19303 LSSumclsm 19596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-iin 5003 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-tpos 8238 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-ress 17217 df-plusg 17253 df-0g 17430 df-mre 17573 df-mrc 17574 df-acs 17576 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-submnd 18748 df-grp 18900 df-minusg 18901 df-subg 19085 df-oppg 19304 df-lsm 19598 |
This theorem is referenced by: lcvexchlem3 38540 lcfrlem23 41070 |
Copyright terms: Public domain | W3C validator |