![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdhcl | Structured version Visualization version GIF version |
Description: Lemmma for ~? mapdh . (Contributed by NM, 3-Apr-2015.) |
Ref | Expression |
---|---|
mapdh.q | ⊢ 𝑄 = (0g‘𝐶) |
mapdh.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
mapdh.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdh.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdh.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdh.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdh.s | ⊢ − = (-g‘𝑈) |
mapdhc.o | ⊢ 0 = (0g‘𝑈) |
mapdh.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdh.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdh.d | ⊢ 𝐷 = (Base‘𝐶) |
mapdh.r | ⊢ 𝑅 = (-g‘𝐶) |
mapdh.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdh.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdhc.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
mapdh.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
mapdhcl.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
mapdhc.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
mapdh.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
Ref | Expression |
---|---|
mapdhcl | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oteq3 4885 | . . . 4 ⊢ (𝑌 = 0 → 〈𝑋, 𝐹, 𝑌〉 = 〈𝑋, 𝐹, 0 〉) | |
2 | 1 | fveq2d 6901 | . . 3 ⊢ (𝑌 = 0 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (𝐼‘〈𝑋, 𝐹, 0 〉)) |
3 | 2 | eleq1d 2814 | . 2 ⊢ (𝑌 = 0 → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ∈ 𝐷 ↔ (𝐼‘〈𝑋, 𝐹, 0 〉) ∈ 𝐷)) |
4 | mapdh.q | . . . 4 ⊢ 𝑄 = (0g‘𝐶) | |
5 | mapdh.i | . . . 4 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
6 | mapdhcl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ≠ 0 ) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
8 | mapdhc.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ≠ 0 ) → 𝐹 ∈ 𝐷) |
10 | mapdhc.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
11 | 10 | anim1i 614 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 ≠ 0 ) → (𝑌 ∈ 𝑉 ∧ 𝑌 ≠ 0 )) |
12 | eldifsn 4791 | . . . . 5 ⊢ (𝑌 ∈ (𝑉 ∖ { 0 }) ↔ (𝑌 ∈ 𝑉 ∧ 𝑌 ≠ 0 )) | |
13 | 11, 12 | sylibr 233 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ≠ 0 ) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
14 | 4, 5, 7, 9, 13 | mapdhval2 41199 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ≠ 0 ) → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅ℎ)})))) |
15 | mapdh.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
16 | mapdh.m | . . . . 5 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
17 | mapdh.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
18 | mapdh.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
19 | mapdh.s | . . . . 5 ⊢ − = (-g‘𝑈) | |
20 | mapdhc.o | . . . . 5 ⊢ 0 = (0g‘𝑈) | |
21 | mapdh.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
22 | mapdh.c | . . . . 5 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
23 | mapdh.d | . . . . 5 ⊢ 𝐷 = (Base‘𝐶) | |
24 | mapdh.r | . . . . 5 ⊢ 𝑅 = (-g‘𝐶) | |
25 | mapdh.j | . . . . 5 ⊢ 𝐽 = (LSpan‘𝐶) | |
26 | mapdh.k | . . . . . 6 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
27 | 26 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 ≠ 0 ) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
28 | mapdh.ne | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
29 | 28 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 ≠ 0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
30 | mapdh.mn | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
31 | 30 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 ≠ 0 ) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
32 | 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 7, 13, 9, 29, 31 | mapdpg 41179 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ≠ 0 ) → ∃!ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅ℎ)}))) |
33 | riotacl 7394 | . . . 4 ⊢ (∃!ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅ℎ)})) → (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅ℎ)}))) ∈ 𝐷) | |
34 | 32, 33 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ≠ 0 ) → (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅ℎ)}))) ∈ 𝐷) |
35 | 14, 34 | eqeltrd 2829 | . 2 ⊢ ((𝜑 ∧ 𝑌 ≠ 0 ) → (𝐼‘〈𝑋, 𝐹, 𝑌〉) ∈ 𝐷) |
36 | 4, 5, 20, 6, 8 | mapdhval0 41198 | . . 3 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 0 〉) = 𝑄) |
37 | 15, 22, 23, 4, 26 | lcd0vcl 41087 | . . 3 ⊢ (𝜑 → 𝑄 ∈ 𝐷) |
38 | 36, 37 | eqeltrd 2829 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 0 〉) ∈ 𝐷) |
39 | 3, 35, 38 | pm2.61ne 3024 | 1 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2937 ∃!wreu 3371 Vcvv 3471 ∖ cdif 3944 ifcif 4529 {csn 4629 〈cotp 4637 ↦ cmpt 5231 ‘cfv 6548 ℩crio 7375 (class class class)co 7420 1st c1st 7991 2nd c2nd 7992 Basecbs 17179 0gc0g 17420 -gcsg 18891 LSpanclspn 20854 HLchlt 38822 LHypclh 39457 DVecHcdvh 40551 LCDualclcd 41059 mapdcmpd 41097 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-riotaBAD 38425 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-ot 4638 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-of 7685 df-om 7871 df-1st 7993 df-2nd 7994 df-tpos 8231 df-undef 8278 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-er 8724 df-map 8846 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-n0 12503 df-z 12589 df-uz 12853 df-fz 13517 df-struct 17115 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-mulr 17246 df-sca 17248 df-vsca 17249 df-0g 17422 df-mre 17565 df-mrc 17566 df-acs 17568 df-proset 18286 df-poset 18304 df-plt 18321 df-lub 18337 df-glb 18338 df-join 18339 df-meet 18340 df-p0 18416 df-p1 18417 df-lat 18423 df-clat 18490 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-submnd 18740 df-grp 18892 df-minusg 18893 df-sbg 18894 df-subg 19077 df-cntz 19267 df-oppg 19296 df-lsm 19590 df-cmn 19736 df-abl 19737 df-mgp 20074 df-rng 20092 df-ur 20121 df-ring 20174 df-oppr 20272 df-dvdsr 20295 df-unit 20296 df-invr 20326 df-dvr 20339 df-drng 20625 df-lmod 20744 df-lss 20815 df-lsp 20855 df-lvec 20987 df-lsatoms 38448 df-lshyp 38449 df-lcv 38491 df-lfl 38530 df-lkr 38558 df-ldual 38596 df-oposet 38648 df-ol 38650 df-oml 38651 df-covers 38738 df-ats 38739 df-atl 38770 df-cvlat 38794 df-hlat 38823 df-llines 38971 df-lplanes 38972 df-lvols 38973 df-lines 38974 df-psubsp 38976 df-pmap 38977 df-padd 39269 df-lhyp 39461 df-laut 39462 df-ldil 39577 df-ltrn 39578 df-trl 39632 df-tgrp 40216 df-tendo 40228 df-edring 40230 df-dveca 40476 df-disoa 40502 df-dvech 40552 df-dib 40612 df-dic 40646 df-dih 40702 df-doch 40821 df-djh 40868 df-lcdual 41060 df-mapd 41098 |
This theorem is referenced by: mapdheq4lem 41204 mapdheq4 41205 mapdh6lem1N 41206 mapdh6lem2N 41207 mapdh6aN 41208 mapdh6bN 41210 mapdh6cN 41211 mapdh6dN 41212 mapdh6hN 41216 mapdh7eN 41221 mapdh7cN 41222 mapdh7fN 41224 mapdh75e 41225 mapdh75fN 41228 mapdh8aa 41249 mapdh8d0N 41255 mapdh8d 41256 mapdh9a 41262 mapdh9aOLDN 41263 hdmap1cl 41277 hdmap1eulem 41295 hdmap1eulemOLDN 41296 |
Copyright terms: Public domain | W3C validator |