![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdpglem2a | Structured version Visualization version GIF version |
Description: Lemma for mapdpg 41265. (Contributed by NM, 20-Mar-2015.) |
Ref | Expression |
---|---|
mapdpglem.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdpglem.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdpglem.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdpglem.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdpglem.s | ⊢ − = (-g‘𝑈) |
mapdpglem.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdpglem.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdpglem.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdpglem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
mapdpglem.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
mapdpglem1.p | ⊢ ⊕ = (LSSum‘𝐶) |
mapdpglem2.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdpglem3.f | ⊢ 𝐹 = (Base‘𝐶) |
mapdpglem3.te | ⊢ (𝜑 → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌})))) |
Ref | Expression |
---|---|
mapdpglem2a | ⊢ (𝜑 → 𝑡 ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdpglem.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | mapdpglem.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
3 | mapdpglem.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
4 | 1, 2, 3 | lcdlmod 41151 | . . 3 ⊢ (𝜑 → 𝐶 ∈ LMod) |
5 | mapdpglem.m | . . . 4 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
6 | mapdpglem.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
7 | eqid 2725 | . . . 4 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
8 | eqid 2725 | . . . 4 ⊢ (LSubSp‘𝐶) = (LSubSp‘𝐶) | |
9 | 1, 6, 3 | dvhlmod 40669 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
10 | mapdpglem.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
11 | mapdpglem.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑈) | |
12 | mapdpglem.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑈) | |
13 | 11, 7, 12 | lspsncl 20869 | . . . . 5 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈)) |
14 | 9, 10, 13 | syl2anc 582 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈)) |
15 | 1, 5, 6, 7, 2, 8, 3, 14 | mapdcl2 41215 | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) ∈ (LSubSp‘𝐶)) |
16 | mapdpglem.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
17 | 11, 7, 12 | lspsncl 20869 | . . . . 5 ⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
18 | 9, 16, 17 | syl2anc 582 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
19 | 1, 5, 6, 7, 2, 8, 3, 18 | mapdcl2 41215 | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶)) |
20 | mapdpglem1.p | . . . 4 ⊢ ⊕ = (LSSum‘𝐶) | |
21 | 8, 20 | lsmcl 20976 | . . 3 ⊢ ((𝐶 ∈ LMod ∧ (𝑀‘(𝑁‘{𝑋})) ∈ (LSubSp‘𝐶) ∧ (𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶)) → ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌}))) ∈ (LSubSp‘𝐶)) |
22 | 4, 15, 19, 21 | syl3anc 1368 | . 2 ⊢ (𝜑 → ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌}))) ∈ (LSubSp‘𝐶)) |
23 | mapdpglem3.te | . 2 ⊢ (𝜑 → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌})))) | |
24 | mapdpglem3.f | . . 3 ⊢ 𝐹 = (Base‘𝐶) | |
25 | 24, 8 | lssel 20829 | . 2 ⊢ ((((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌}))) ∈ (LSubSp‘𝐶) ∧ 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌})))) → 𝑡 ∈ 𝐹) |
26 | 22, 23, 25 | syl2anc 582 | 1 ⊢ (𝜑 → 𝑡 ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {csn 4629 ‘cfv 6547 (class class class)co 7417 Basecbs 17180 -gcsg 18897 LSSumclsm 19597 LModclmod 20751 LSubSpclss 20823 LSpanclspn 20863 HLchlt 38908 LHypclh 39543 DVecHcdvh 40637 LCDualclcd 41145 mapdcmpd 41183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-riotaBAD 38511 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-of 7683 df-om 7870 df-1st 7992 df-2nd 7993 df-tpos 8230 df-undef 8277 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-map 8845 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-n0 12503 df-z 12589 df-uz 12853 df-fz 13517 df-struct 17116 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-ress 17210 df-plusg 17246 df-mulr 17247 df-sca 17249 df-vsca 17250 df-0g 17423 df-mre 17566 df-mrc 17567 df-acs 17569 df-proset 18287 df-poset 18305 df-plt 18322 df-lub 18338 df-glb 18339 df-join 18340 df-meet 18341 df-p0 18417 df-p1 18418 df-lat 18424 df-clat 18491 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-submnd 18741 df-grp 18898 df-minusg 18899 df-sbg 18900 df-subg 19083 df-cntz 19276 df-oppg 19305 df-lsm 19599 df-cmn 19745 df-abl 19746 df-mgp 20083 df-rng 20101 df-ur 20130 df-ring 20183 df-oppr 20281 df-dvdsr 20304 df-unit 20305 df-invr 20335 df-dvr 20348 df-drng 20634 df-lmod 20753 df-lss 20824 df-lsp 20864 df-lvec 20996 df-lsatoms 38534 df-lshyp 38535 df-lcv 38577 df-lfl 38616 df-lkr 38644 df-ldual 38682 df-oposet 38734 df-ol 38736 df-oml 38737 df-covers 38824 df-ats 38825 df-atl 38856 df-cvlat 38880 df-hlat 38909 df-llines 39057 df-lplanes 39058 df-lvols 39059 df-lines 39060 df-psubsp 39062 df-pmap 39063 df-padd 39355 df-lhyp 39547 df-laut 39548 df-ldil 39663 df-ltrn 39664 df-trl 39718 df-tgrp 40302 df-tendo 40314 df-edring 40316 df-dveca 40562 df-disoa 40588 df-dvech 40638 df-dib 40698 df-dic 40732 df-dih 40788 df-doch 40907 df-djh 40954 df-lcdual 41146 df-mapd 41184 |
This theorem is referenced by: mapdpglem5N 41236 mapdpglem22 41252 |
Copyright terms: Public domain | W3C validator |