Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt16 Structured version   Visualization version   GIF version

Theorem metakunt16 41672
Description: Construction of another permutation. (Contributed by metakunt, 25-May-2024.)
Hypotheses
Ref Expression
metakunt16.1 (𝜑𝑀 ∈ ℕ)
metakunt16.2 (𝜑𝐼 ∈ ℕ)
metakunt16.3 (𝜑𝐼𝑀)
metakunt16.4 𝐹 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
Assertion
Ref Expression
metakunt16 (𝜑𝐹:(𝐼...(𝑀 − 1))–1-1-onto→(1...(𝑀𝐼)))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑀   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem metakunt16
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 metakunt16.4 . 2 𝐹 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
2 metakunt16.2 . . . . 5 (𝜑𝐼 ∈ ℕ)
32nnzd 12615 . . . 4 (𝜑𝐼 ∈ ℤ)
43adantr 480 . . 3 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 𝐼 ∈ ℤ)
5 metakunt16.1 . . . . . 6 (𝜑𝑀 ∈ ℕ)
65nnzd 12615 . . . . 5 (𝜑𝑀 ∈ ℤ)
76adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 𝑀 ∈ ℤ)
8 1zzd 12623 . . . 4 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 1 ∈ ℤ)
97, 8zsubcld 12701 . . 3 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → (𝑀 − 1) ∈ ℤ)
108, 4zsubcld 12701 . . 3 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → (1 − 𝐼) ∈ ℤ)
11 simpr 484 . . 3 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 𝑥 ∈ (𝐼...(𝑀 − 1)))
12 elfz3 13543 . . . 4 ((1 − 𝐼) ∈ ℤ → (1 − 𝐼) ∈ ((1 − 𝐼)...(1 − 𝐼)))
1310, 12syl 17 . . 3 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → (1 − 𝐼) ∈ ((1 − 𝐼)...(1 − 𝐼)))
144zcnd 12697 . . . . 5 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 𝐼 ∈ ℂ)
15 1cnd 11239 . . . . 5 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 1 ∈ ℂ)
1614, 15pncan3d 11604 . . . 4 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → (𝐼 + (1 − 𝐼)) = 1)
1716eqcomd 2734 . . 3 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 1 = (𝐼 + (1 − 𝐼)))
185nncnd 12258 . . . . . 6 (𝜑𝑀 ∈ ℂ)
1918adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 𝑀 ∈ ℂ)
2019, 15, 14npncand 11625 . . . 4 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → ((𝑀 − 1) + (1 − 𝐼)) = (𝑀𝐼))
2120eqcomd 2734 . . 3 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → (𝑀𝐼) = ((𝑀 − 1) + (1 − 𝐼)))
224, 9, 10, 10, 11, 13, 17, 21fzadd2d 41448 . 2 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → (𝑥 + (1 − 𝐼)) ∈ (1...(𝑀𝐼)))
233adantr 480 . . 3 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝐼 ∈ ℤ)
246adantr 480 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝑀 ∈ ℤ)
25 1zzd 12623 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 1 ∈ ℤ)
2624, 25zsubcld 12701 . . 3 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝑀 − 1) ∈ ℤ)
27 elfznn 13562 . . . . . 6 (𝑦 ∈ (1...(𝑀𝐼)) → 𝑦 ∈ ℕ)
2827adantl 481 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝑦 ∈ ℕ)
29 nnz 12609 . . . . 5 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
3028, 29syl 17 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝑦 ∈ ℤ)
3125, 23zsubcld 12701 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (1 − 𝐼) ∈ ℤ)
3230, 31zsubcld 12701 . . 3 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝑦 − (1 − 𝐼)) ∈ ℤ)
3323zred 12696 . . . . . . 7 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝐼 ∈ ℝ)
3433recnd 11272 . . . . . 6 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝐼 ∈ ℂ)
35 1cnd 11239 . . . . . 6 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 1 ∈ ℂ)
3634, 35pncan3d 11604 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝐼 + (1 − 𝐼)) = 1)
3727nnge1d 12290 . . . . . 6 (𝑦 ∈ (1...(𝑀𝐼)) → 1 ≤ 𝑦)
3837adantl 481 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 1 ≤ 𝑦)
3936, 38eqbrtrd 5170 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝐼 + (1 − 𝐼)) ≤ 𝑦)
40 1red 11245 . . . . . . 7 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 1 ∈ ℝ)
4140, 33resubcld 11672 . . . . . 6 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (1 − 𝐼) ∈ ℝ)
4228nnred 12257 . . . . . 6 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝑦 ∈ ℝ)
4333, 41, 423jca 1126 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝐼 ∈ ℝ ∧ (1 − 𝐼) ∈ ℝ ∧ 𝑦 ∈ ℝ))
44 leaddsub 11720 . . . . 5 ((𝐼 ∈ ℝ ∧ (1 − 𝐼) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐼 + (1 − 𝐼)) ≤ 𝑦𝐼 ≤ (𝑦 − (1 − 𝐼))))
4543, 44syl 17 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → ((𝐼 + (1 − 𝐼)) ≤ 𝑦𝐼 ≤ (𝑦 − (1 − 𝐼))))
4639, 45mpbid 231 . . 3 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝐼 ≤ (𝑦 − (1 − 𝐼)))
47 elfzle2 13537 . . . . . 6 (𝑦 ∈ (1...(𝑀𝐼)) → 𝑦 ≤ (𝑀𝐼))
4847adantl 481 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝑦 ≤ (𝑀𝐼))
4918adantr 480 . . . . . 6 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝑀 ∈ ℂ)
5023zcnd 12697 . . . . . 6 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝐼 ∈ ℂ)
5149, 35, 50npncand 11625 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → ((𝑀 − 1) + (1 − 𝐼)) = (𝑀𝐼))
5248, 51breqtrrd 5176 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝑦 ≤ ((𝑀 − 1) + (1 − 𝐼)))
5331zred 12696 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (1 − 𝐼) ∈ ℝ)
5426zred 12696 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝑀 − 1) ∈ ℝ)
5542, 53, 54lesubaddd 11841 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → ((𝑦 − (1 − 𝐼)) ≤ (𝑀 − 1) ↔ 𝑦 ≤ ((𝑀 − 1) + (1 − 𝐼))))
5652, 55mpbird 257 . . 3 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝑦 − (1 − 𝐼)) ≤ (𝑀 − 1))
5723, 26, 32, 46, 56elfzd 13524 . 2 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝑦 − (1 − 𝐼)) ∈ (𝐼...(𝑀 − 1)))
58 1cnd 11239 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → 1 ∈ ℂ)
5934adantrl 715 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → 𝐼 ∈ ℂ)
6058, 59subcld 11601 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → (1 − 𝐼) ∈ ℂ)
61 elfzelz 13533 . . . . . . 7 (𝑥 ∈ (𝐼...(𝑀 − 1)) → 𝑥 ∈ ℤ)
6261ad2antrl 727 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → 𝑥 ∈ ℤ)
63 zcn 12593 . . . . . 6 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
6462, 63syl 17 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → 𝑥 ∈ ℂ)
6528adantrl 715 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → 𝑦 ∈ ℕ)
66 nncn 12250 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
6765, 66syl 17 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → 𝑦 ∈ ℂ)
6860, 64, 67addrsub 11661 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → (((1 − 𝐼) + 𝑥) = 𝑦𝑥 = (𝑦 − (1 − 𝐼))))
6968bicomd 222 . . 3 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → (𝑥 = (𝑦 − (1 − 𝐼)) ↔ ((1 − 𝐼) + 𝑥) = 𝑦))
7060, 64addcomd 11446 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → ((1 − 𝐼) + 𝑥) = (𝑥 + (1 − 𝐼)))
7170eqeq1d 2730 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → (((1 − 𝐼) + 𝑥) = 𝑦 ↔ (𝑥 + (1 − 𝐼)) = 𝑦))
72 eqcom 2735 . . . . 5 ((𝑥 + (1 − 𝐼)) = 𝑦𝑦 = (𝑥 + (1 − 𝐼)))
7372a1i 11 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → ((𝑥 + (1 − 𝐼)) = 𝑦𝑦 = (𝑥 + (1 − 𝐼))))
7471, 73bitrd 279 . . 3 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → (((1 − 𝐼) + 𝑥) = 𝑦𝑦 = (𝑥 + (1 − 𝐼))))
7569, 74bitrd 279 . 2 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → (𝑥 = (𝑦 − (1 − 𝐼)) ↔ 𝑦 = (𝑥 + (1 − 𝐼))))
761, 22, 57, 75f1o2d 7675 1 (𝜑𝐹:(𝐼...(𝑀 − 1))–1-1-onto→(1...(𝑀𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099   class class class wbr 5148  cmpt 5231  1-1-ontowf1o 6547  (class class class)co 7420  cc 11136  cr 11137  1c1 11139   + caddc 11141  cle 11279  cmin 11474  cn 12242  cz 12588  ...cfz 13516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-er 8724  df-en 8964  df-dom 8965  df-sdom 8966  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-n0 12503  df-z 12589  df-uz 12853  df-fz 13517
This theorem is referenced by:  metakunt25  41681
  Copyright terms: Public domain W3C validator
OSZAR »