MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  npncand Structured version   Visualization version   GIF version

Theorem npncand 11626
Description: Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
pncand.2 (𝜑𝐵 ∈ ℂ)
subaddd.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
npncand (𝜑 → ((𝐴𝐵) + (𝐵𝐶)) = (𝐴𝐶))

Proof of Theorem npncand
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 pncand.2 . 2 (𝜑𝐵 ∈ ℂ)
3 subaddd.3 . 2 (𝜑𝐶 ∈ ℂ)
4 npncan 11512 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐵) + (𝐵𝐶)) = (𝐴𝐶))
51, 2, 3, 4syl3anc 1369 1 (𝜑 → ((𝐴𝐵) + (𝐵𝐶)) = (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  (class class class)co 7420  cc 11137   + caddc 11142  cmin 11475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-ltxr 11284  df-sub 11477
This theorem is referenced by:  subeqxfrd  11654  recextlem1  11875  subsq  14206  bpoly4  16036  sylow1lem1  19553  rrxmet  25349  ioombl1lem3  25502  vitalilem1  25550  dvmulbr  25882  dvmulbrOLD  25883  abelthlem9  26390  pntibndlem2  27537  axcontlem8  28795  bj-bary1  36791  mblfinlem3  37132  rrnmet  37302  metakunt15  41671  metakunt16  41672  metakunt28  41684  congtr  42386  ioodvbdlimc1lem2  45320  ioodvbdlimc2lem  45322  dirkertrigeqlem2  45487  fourierdlem42  45537  hoidmv1lelem2  45980  hoidmvlelem2  45984  hspmbllem1  46014  sharhght  46253  itscnhlinecirc02plem2  47856  inlinecirc02p  47860
  Copyright terms: Public domain W3C validator
OSZAR »