![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mul02 | Structured version Visualization version GIF version |
Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. Based on ideas by Eric Schmidt. (Contributed by NM, 10-Aug-1999.) (Revised by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
mul02 | ⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnre 11242 | . 2 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | |
2 | 0cn 11237 | . . . . . . 7 ⊢ 0 ∈ ℂ | |
3 | recn 11229 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
4 | ax-icn 11198 | . . . . . . . 8 ⊢ i ∈ ℂ | |
5 | recn 11229 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℂ) | |
6 | mulcl 11223 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (i · 𝑦) ∈ ℂ) | |
7 | 4, 5, 6 | sylancr 586 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → (i · 𝑦) ∈ ℂ) |
8 | adddi 11228 | . . . . . . 7 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ) → (0 · (𝑥 + (i · 𝑦))) = ((0 · 𝑥) + (0 · (i · 𝑦)))) | |
9 | 2, 3, 7, 8 | mp3an3an 1464 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 · (𝑥 + (i · 𝑦))) = ((0 · 𝑥) + (0 · (i · 𝑦)))) |
10 | mul02lem2 11422 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → (0 · 𝑥) = 0) | |
11 | mul12 11410 | . . . . . . . . 9 ⊢ ((0 ∈ ℂ ∧ i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 · (i · 𝑦)) = (i · (0 · 𝑦))) | |
12 | 2, 4, 5, 11 | mp3an12i 1462 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → (0 · (i · 𝑦)) = (i · (0 · 𝑦))) |
13 | mul02lem2 11422 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℝ → (0 · 𝑦) = 0) | |
14 | 13 | oveq2d 7436 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → (i · (0 · 𝑦)) = (i · 0)) |
15 | 12, 14 | eqtrd 2768 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → (0 · (i · 𝑦)) = (i · 0)) |
16 | 10, 15 | oveqan12d 7439 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((0 · 𝑥) + (0 · (i · 𝑦))) = (0 + (i · 0))) |
17 | 9, 16 | eqtrd 2768 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 · (𝑥 + (i · 𝑦))) = (0 + (i · 0))) |
18 | cnre 11242 | . . . . . . . 8 ⊢ (0 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 0 = (𝑥 + (i · 𝑦))) | |
19 | 2, 18 | ax-mp 5 | . . . . . . 7 ⊢ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 0 = (𝑥 + (i · 𝑦)) |
20 | oveq2 7428 | . . . . . . . . . 10 ⊢ (0 = (𝑥 + (i · 𝑦)) → (0 · 0) = (0 · (𝑥 + (i · 𝑦)))) | |
21 | 20 | eqeq1d 2730 | . . . . . . . . 9 ⊢ (0 = (𝑥 + (i · 𝑦)) → ((0 · 0) = (0 + (i · 0)) ↔ (0 · (𝑥 + (i · 𝑦))) = (0 + (i · 0)))) |
22 | 17, 21 | syl5ibrcom 246 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 = (𝑥 + (i · 𝑦)) → (0 · 0) = (0 + (i · 0)))) |
23 | 22 | rexlimivv 3196 | . . . . . . 7 ⊢ (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 0 = (𝑥 + (i · 𝑦)) → (0 · 0) = (0 + (i · 0))) |
24 | 19, 23 | ax-mp 5 | . . . . . 6 ⊢ (0 · 0) = (0 + (i · 0)) |
25 | 0re 11247 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
26 | mul02lem2 11422 | . . . . . . 7 ⊢ (0 ∈ ℝ → (0 · 0) = 0) | |
27 | 25, 26 | ax-mp 5 | . . . . . 6 ⊢ (0 · 0) = 0 |
28 | 24, 27 | eqtr3i 2758 | . . . . 5 ⊢ (0 + (i · 0)) = 0 |
29 | 17, 28 | eqtrdi 2784 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 · (𝑥 + (i · 𝑦))) = 0) |
30 | oveq2 7428 | . . . . 5 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → (0 · 𝐴) = (0 · (𝑥 + (i · 𝑦)))) | |
31 | 30 | eqeq1d 2730 | . . . 4 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → ((0 · 𝐴) = 0 ↔ (0 · (𝑥 + (i · 𝑦))) = 0)) |
32 | 29, 31 | syl5ibrcom 246 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥 + (i · 𝑦)) → (0 · 𝐴) = 0)) |
33 | 32 | rexlimivv 3196 | . 2 ⊢ (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → (0 · 𝐴) = 0) |
34 | 1, 33 | syl 17 | 1 ⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∃wrex 3067 (class class class)co 7420 ℂcc 11137 ℝcr 11138 0cc0 11139 ici 11141 + caddc 11142 · cmul 11144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-ltxr 11284 |
This theorem is referenced by: mul01 11424 cnegex2 11427 mul02i 11434 mul02d 11443 bcval5 14310 fsumconst 15769 demoivreALT 16178 nnnn0modprm0 16775 cnfldmulg 21331 itg2mulc 25690 dvcmulf 25889 coe0 26203 plymul0or 26228 sineq0 26471 jensen 26934 musumsum 27137 lgsne0 27281 brbtwn2 28729 ax5seglem4 28756 axeuclidlem 28786 axeuclid 28787 axcontlem2 28789 axcontlem4 28791 eulerpartlemb 33988 expgrowth 43772 dvcosax 45314 |
Copyright terms: Public domain | W3C validator |