![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nprmi | Structured version Visualization version GIF version |
Description: An inference for compositeness. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Jun-2015.) |
Ref | Expression |
---|---|
nprmi.1 | ⊢ 𝐴 ∈ ℕ |
nprmi.2 | ⊢ 𝐵 ∈ ℕ |
nprmi.3 | ⊢ 1 < 𝐴 |
nprmi.4 | ⊢ 1 < 𝐵 |
nprmi.5 | ⊢ (𝐴 · 𝐵) = 𝑁 |
Ref | Expression |
---|---|
nprmi | ⊢ ¬ 𝑁 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nprmi.1 | . . 3 ⊢ 𝐴 ∈ ℕ | |
2 | nprmi.3 | . . 3 ⊢ 1 < 𝐴 | |
3 | nprmi.2 | . . 3 ⊢ 𝐵 ∈ ℕ | |
4 | nprmi.4 | . . 3 ⊢ 1 < 𝐵 | |
5 | eluz2b2 12943 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) ↔ (𝐴 ∈ ℕ ∧ 1 < 𝐴)) | |
6 | eluz2b2 12943 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘2) ↔ (𝐵 ∈ ℕ ∧ 1 < 𝐵)) | |
7 | nprm 16666 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → ¬ (𝐴 · 𝐵) ∈ ℙ) | |
8 | 5, 6, 7 | syl2anbr 597 | . . 3 ⊢ (((𝐴 ∈ ℕ ∧ 1 < 𝐴) ∧ (𝐵 ∈ ℕ ∧ 1 < 𝐵)) → ¬ (𝐴 · 𝐵) ∈ ℙ) |
9 | 1, 2, 3, 4, 8 | mp4an 691 | . 2 ⊢ ¬ (𝐴 · 𝐵) ∈ ℙ |
10 | nprmi.5 | . . 3 ⊢ (𝐴 · 𝐵) = 𝑁 | |
11 | 10 | eleq1i 2820 | . 2 ⊢ ((𝐴 · 𝐵) ∈ ℙ ↔ 𝑁 ∈ ℙ) |
12 | 9, 11 | mtbi 321 | 1 ⊢ ¬ 𝑁 ∈ ℙ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 394 = wceq 1533 ∈ wcel 2098 class class class wbr 5152 ‘cfv 6553 (class class class)co 7426 1c1 11147 · cmul 11151 < clt 11286 ℕcn 12250 2c2 12305 ℤ≥cuz 12860 ℙcprime 16649 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-2o 8494 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-sup 9473 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12251 df-2 12313 df-3 12314 df-n0 12511 df-z 12597 df-uz 12861 df-rp 13015 df-seq 14007 df-exp 14067 df-cj 15086 df-re 15087 df-im 15088 df-sqrt 15222 df-abs 15223 df-dvds 16239 df-prm 16650 |
This theorem is referenced by: 4nprm 16673 dec5nprm 17042 dec2nprm 17043 6nprm 17086 8nprm 17088 9nprm 17089 10nprm 17090 prmlem2 17096 fmtno4prmfac193 46942 fmtno5nprm 46952 |
Copyright terms: Public domain | W3C validator |