![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nprm | Structured version Visualization version GIF version |
Description: A product of two integers greater than one is composite. (Contributed by Mario Carneiro, 20-Jun-2015.) |
Ref | Expression |
---|---|
nprm | ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → ¬ (𝐴 · 𝐵) ∈ ℙ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 12856 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℤ) | |
2 | 1 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → 𝐴 ∈ ℤ) |
3 | 2 | zred 12690 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → 𝐴 ∈ ℝ) |
4 | eluz2gt1 12928 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘2) → 1 < 𝐵) | |
5 | 4 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → 1 < 𝐵) |
6 | eluzelz 12856 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ ℤ) | |
7 | 6 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → 𝐵 ∈ ℤ) |
8 | 7 | zred 12690 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → 𝐵 ∈ ℝ) |
9 | eluz2nn 12892 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℕ) | |
10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → 𝐴 ∈ ℕ) |
11 | 10 | nngt0d 12285 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → 0 < 𝐴) |
12 | ltmulgt11 12098 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝐵 ↔ 𝐴 < (𝐴 · 𝐵))) | |
13 | 3, 8, 11, 12 | syl3anc 1369 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → (1 < 𝐵 ↔ 𝐴 < (𝐴 · 𝐵))) |
14 | 5, 13 | mpbid 231 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → 𝐴 < (𝐴 · 𝐵)) |
15 | 3, 14 | ltned 11374 | . 2 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → 𝐴 ≠ (𝐴 · 𝐵)) |
16 | dvdsmul1 16248 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∥ (𝐴 · 𝐵)) | |
17 | 1, 6, 16 | syl2an 595 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → 𝐴 ∥ (𝐴 · 𝐵)) |
18 | isprm4 16648 | . . . . . . 7 ⊢ ((𝐴 · 𝐵) ∈ ℙ ↔ ((𝐴 · 𝐵) ∈ (ℤ≥‘2) ∧ ∀𝑥 ∈ (ℤ≥‘2)(𝑥 ∥ (𝐴 · 𝐵) → 𝑥 = (𝐴 · 𝐵)))) | |
19 | 18 | simprbi 496 | . . . . . 6 ⊢ ((𝐴 · 𝐵) ∈ ℙ → ∀𝑥 ∈ (ℤ≥‘2)(𝑥 ∥ (𝐴 · 𝐵) → 𝑥 = (𝐴 · 𝐵))) |
20 | breq1 5145 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑥 ∥ (𝐴 · 𝐵) ↔ 𝐴 ∥ (𝐴 · 𝐵))) | |
21 | eqeq1 2732 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑥 = (𝐴 · 𝐵) ↔ 𝐴 = (𝐴 · 𝐵))) | |
22 | 20, 21 | imbi12d 344 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((𝑥 ∥ (𝐴 · 𝐵) → 𝑥 = (𝐴 · 𝐵)) ↔ (𝐴 ∥ (𝐴 · 𝐵) → 𝐴 = (𝐴 · 𝐵)))) |
23 | 22 | rspcv 3604 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → (∀𝑥 ∈ (ℤ≥‘2)(𝑥 ∥ (𝐴 · 𝐵) → 𝑥 = (𝐴 · 𝐵)) → (𝐴 ∥ (𝐴 · 𝐵) → 𝐴 = (𝐴 · 𝐵)))) |
24 | 19, 23 | syl5 34 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 · 𝐵) ∈ ℙ → (𝐴 ∥ (𝐴 · 𝐵) → 𝐴 = (𝐴 · 𝐵)))) |
25 | 24 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → ((𝐴 · 𝐵) ∈ ℙ → (𝐴 ∥ (𝐴 · 𝐵) → 𝐴 = (𝐴 · 𝐵)))) |
26 | 17, 25 | mpid 44 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → ((𝐴 · 𝐵) ∈ ℙ → 𝐴 = (𝐴 · 𝐵))) |
27 | 26 | necon3ad 2949 | . 2 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → (𝐴 ≠ (𝐴 · 𝐵) → ¬ (𝐴 · 𝐵) ∈ ℙ)) |
28 | 15, 27 | mpd 15 | 1 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → ¬ (𝐴 · 𝐵) ∈ ℙ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 ∀wral 3057 class class class wbr 5142 ‘cfv 6542 (class class class)co 7414 ℝcr 11131 0cc0 11132 1c1 11133 · cmul 11137 < clt 11272 ℕcn 12236 2c2 12291 ℤcz 12582 ℤ≥cuz 12846 ∥ cdvds 16224 ℙcprime 16635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9459 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-n0 12497 df-z 12583 df-uz 12847 df-rp 13001 df-seq 13993 df-exp 14053 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16225 df-prm 16636 |
This theorem is referenced by: nprmi 16653 dvdsnprmd 16654 2mulprm 16657 sqnprm 16666 mersenne 27153 341fppr2 47068 9fppr8 47071 nfermltl2rev 47077 ztprmneprm 47405 |
Copyright terms: Public domain | W3C validator |