![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 9fppr8 | Structured version Visualization version GIF version |
Description: 9 is the (smallest) Fermat pseudoprime to the base 8. (Contributed by AV, 2-Jun-2023.) |
Ref | Expression |
---|---|
9fppr8 | ⊢ 9 ∈ ( FPPr ‘8) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8nn 12331 | . 2 ⊢ 8 ∈ ℕ | |
2 | 4z 12620 | . . . . 5 ⊢ 4 ∈ ℤ | |
3 | 9nn 12334 | . . . . . 6 ⊢ 9 ∈ ℕ | |
4 | 3 | nnzi 12610 | . . . . 5 ⊢ 9 ∈ ℤ |
5 | 4re 12320 | . . . . . 6 ⊢ 4 ∈ ℝ | |
6 | 9re 12335 | . . . . . 6 ⊢ 9 ∈ ℝ | |
7 | 4lt9 12439 | . . . . . 6 ⊢ 4 < 9 | |
8 | 5, 6, 7 | ltleii 11361 | . . . . 5 ⊢ 4 ≤ 9 |
9 | eluz2 12852 | . . . . 5 ⊢ (9 ∈ (ℤ≥‘4) ↔ (4 ∈ ℤ ∧ 9 ∈ ℤ ∧ 4 ≤ 9)) | |
10 | 2, 4, 8, 9 | mpbir3an 1339 | . . . 4 ⊢ 9 ∈ (ℤ≥‘4) |
11 | 2z 12618 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
12 | 3z 12619 | . . . . . . 7 ⊢ 3 ∈ ℤ | |
13 | 2re 12310 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
14 | 3re 12316 | . . . . . . . 8 ⊢ 3 ∈ ℝ | |
15 | 2lt3 12408 | . . . . . . . 8 ⊢ 2 < 3 | |
16 | 13, 14, 15 | ltleii 11361 | . . . . . . 7 ⊢ 2 ≤ 3 |
17 | eluz2 12852 | . . . . . . 7 ⊢ (3 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 2 ≤ 3)) | |
18 | 11, 12, 16, 17 | mpbir3an 1339 | . . . . . 6 ⊢ 3 ∈ (ℤ≥‘2) |
19 | nprm 16652 | . . . . . 6 ⊢ ((3 ∈ (ℤ≥‘2) ∧ 3 ∈ (ℤ≥‘2)) → ¬ (3 · 3) ∈ ℙ) | |
20 | 18, 18, 19 | mp2an 691 | . . . . 5 ⊢ ¬ (3 · 3) ∈ ℙ |
21 | df-nel 3043 | . . . . . 6 ⊢ (9 ∉ ℙ ↔ ¬ 9 ∈ ℙ) | |
22 | 3t3e9 12403 | . . . . . . . 8 ⊢ (3 · 3) = 9 | |
23 | 22 | eqcomi 2737 | . . . . . . 7 ⊢ 9 = (3 · 3) |
24 | 23 | eleq1i 2820 | . . . . . 6 ⊢ (9 ∈ ℙ ↔ (3 · 3) ∈ ℙ) |
25 | 21, 24 | xchbinx 334 | . . . . 5 ⊢ (9 ∉ ℙ ↔ ¬ (3 · 3) ∈ ℙ) |
26 | 20, 25 | mpbir 230 | . . . 4 ⊢ 9 ∉ ℙ |
27 | 9m1e8 12370 | . . . . . . 7 ⊢ (9 − 1) = 8 | |
28 | 27 | oveq2i 7425 | . . . . . 6 ⊢ (8↑(9 − 1)) = (8↑8) |
29 | 28 | oveq1i 7424 | . . . . 5 ⊢ ((8↑(9 − 1)) mod 9) = ((8↑8) mod 9) |
30 | 8exp8mod9 47070 | . . . . 5 ⊢ ((8↑8) mod 9) = 1 | |
31 | 29, 30 | eqtri 2756 | . . . 4 ⊢ ((8↑(9 − 1)) mod 9) = 1 |
32 | 10, 26, 31 | 3pm3.2i 1337 | . . 3 ⊢ (9 ∈ (ℤ≥‘4) ∧ 9 ∉ ℙ ∧ ((8↑(9 − 1)) mod 9) = 1) |
33 | fpprel 47062 | . . 3 ⊢ (8 ∈ ℕ → (9 ∈ ( FPPr ‘8) ↔ (9 ∈ (ℤ≥‘4) ∧ 9 ∉ ℙ ∧ ((8↑(9 − 1)) mod 9) = 1))) | |
34 | 32, 33 | mpbiri 258 | . 2 ⊢ (8 ∈ ℕ → 9 ∈ ( FPPr ‘8)) |
35 | 1, 34 | ax-mp 5 | 1 ⊢ 9 ∈ ( FPPr ‘8) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ∉ wnel 3042 class class class wbr 5142 ‘cfv 6542 (class class class)co 7414 1c1 11133 · cmul 11137 ≤ cle 11273 − cmin 11468 ℕcn 12236 2c2 12291 3c3 12292 4c4 12293 8c8 12297 9c9 12298 ℤcz 12582 ℤ≥cuz 12846 mod cmo 13860 ↑cexp 14052 ℙcprime 16635 FPPr cfppr 47058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9459 df-inf 9460 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-rp 13001 df-fl 13783 df-mod 13861 df-seq 13993 df-exp 14053 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16225 df-prm 16636 df-fppr 47059 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |