MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odhash3 Structured version   Visualization version   GIF version

Theorem odhash3 19525
Description: An element which generates a finite subgroup has order the size of that subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
odhash.x 𝑋 = (Base‘𝐺)
odhash.o 𝑂 = (od‘𝐺)
odhash.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
odhash3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂𝐴) = (♯‘(𝐾‘{𝐴})))

Proof of Theorem odhash3
StepHypRef Expression
1 odhash.x . . . . . 6 𝑋 = (Base‘𝐺)
2 odhash.o . . . . . 6 𝑂 = (od‘𝐺)
31, 2odcl 19485 . . . . 5 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
433ad2ant2 1132 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂𝐴) ∈ ℕ0)
5 hashcl 14342 . . . . . . 7 ((𝐾‘{𝐴}) ∈ Fin → (♯‘(𝐾‘{𝐴})) ∈ ℕ0)
65nn0red 12558 . . . . . 6 ((𝐾‘{𝐴}) ∈ Fin → (♯‘(𝐾‘{𝐴})) ∈ ℝ)
7 pnfnre 11280 . . . . . . . . . 10 +∞ ∉ ℝ
87neli 3044 . . . . . . . . 9 ¬ +∞ ∈ ℝ
9 odhash.k . . . . . . . . . . 11 𝐾 = (mrCls‘(SubGrp‘𝐺))
101, 2, 9odhash 19523 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (♯‘(𝐾‘{𝐴})) = +∞)
1110eleq1d 2814 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → ((♯‘(𝐾‘{𝐴})) ∈ ℝ ↔ +∞ ∈ ℝ))
128, 11mtbiri 327 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → ¬ (♯‘(𝐾‘{𝐴})) ∈ ℝ)
13123expia 1119 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑂𝐴) = 0 → ¬ (♯‘(𝐾‘{𝐴})) ∈ ℝ))
1413necon2ad 2951 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((♯‘(𝐾‘{𝐴})) ∈ ℝ → (𝑂𝐴) ≠ 0))
156, 14syl5 34 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝐾‘{𝐴}) ∈ Fin → (𝑂𝐴) ≠ 0))
16153impia 1115 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂𝐴) ≠ 0)
17 elnnne0 12511 . . . 4 ((𝑂𝐴) ∈ ℕ ↔ ((𝑂𝐴) ∈ ℕ0 ∧ (𝑂𝐴) ≠ 0))
184, 16, 17sylanbrc 582 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂𝐴) ∈ ℕ)
191, 2, 9odhash2 19524 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (♯‘(𝐾‘{𝐴})) = (𝑂𝐴))
2018, 19syld3an3 1407 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (♯‘(𝐾‘{𝐴})) = (𝑂𝐴))
2120eqcomd 2734 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂𝐴) = (♯‘(𝐾‘{𝐴})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2936  {csn 4625  cfv 6543  Fincfn 8958  cr 11132  0cc0 11133  +∞cpnf 11270  cn 12237  0cn0 12497  chash 14316  Basecbs 17174  mrClscmrc 17557  Grpcgrp 18884  SubGrpcsubg 19069  odcod 19473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-inf2 9659  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-iin 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7866  df-1st 7988  df-2nd 7989  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-1o 8481  df-oadd 8485  df-omul 8486  df-er 8719  df-map 8841  df-en 8959  df-dom 8960  df-sdom 8961  df-fin 8962  df-sup 9460  df-inf 9461  df-oi 9528  df-card 9957  df-acn 9960  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-2 12300  df-3 12301  df-n0 12498  df-z 12584  df-uz 12848  df-rp 13002  df-fz 13512  df-fzo 13655  df-fl 13784  df-mod 13862  df-seq 13994  df-exp 14054  df-hash 14317  df-cj 15073  df-re 15074  df-im 15075  df-sqrt 15209  df-abs 15210  df-dvds 16226  df-sets 17127  df-slot 17145  df-ndx 17157  df-base 17175  df-ress 17204  df-plusg 17240  df-0g 17417  df-mre 17560  df-mrc 17561  df-acs 17563  df-mgm 18594  df-sgrp 18673  df-mnd 18689  df-submnd 18735  df-grp 18887  df-minusg 18888  df-sbg 18889  df-mulg 19018  df-subg 19072  df-od 19477
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »