Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opprqusdrng Structured version   Visualization version   GIF version

Theorem opprqusdrng 33222
Description: The quotient of the opposite ring is a division ring iff the opposite of the quotient ring is. (Contributed by Thierry Arnoux, 13-Mar-2025.)
Hypotheses
Ref Expression
opprqus.b 𝐵 = (Base‘𝑅)
opprqus.o 𝑂 = (oppr𝑅)
opprqus.q 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
opprqus1r.r (𝜑𝑅 ∈ Ring)
opprqus1r.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
Assertion
Ref Expression
opprqusdrng (𝜑 → ((oppr𝑄) ∈ DivRing ↔ (𝑂 /s (𝑂 ~QG 𝐼)) ∈ DivRing))

Proof of Theorem opprqusdrng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2727 . . . . . 6 (oppr𝑄) = (oppr𝑄)
2 eqid 2727 . . . . . 6 (1r𝑄) = (1r𝑄)
31, 2oppr1 20294 . . . . 5 (1r𝑄) = (1r‘(oppr𝑄))
4 opprqus.b . . . . . 6 𝐵 = (Base‘𝑅)
5 opprqus.o . . . . . 6 𝑂 = (oppr𝑅)
6 opprqus.q . . . . . 6 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
7 opprqus1r.r . . . . . 6 (𝜑𝑅 ∈ Ring)
8 opprqus1r.i . . . . . 6 (𝜑𝐼 ∈ (2Ideal‘𝑅))
94, 5, 6, 7, 8opprqus1r 33221 . . . . 5 (𝜑 → (1r‘(oppr𝑄)) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼))))
103, 9eqtrid 2779 . . . 4 (𝜑 → (1r𝑄) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼))))
11 eqid 2727 . . . . . 6 (0g𝑄) = (0g𝑄)
121, 11oppr0 20293 . . . . 5 (0g𝑄) = (0g‘(oppr𝑄))
1382idllidld 21153 . . . . . . 7 (𝜑𝐼 ∈ (LIdeal‘𝑅))
14 lidlnsg 33153 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (NrmSGrp‘𝑅))
157, 13, 14syl2anc 582 . . . . . 6 (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
164, 5, 6, 15opprqus0g 33219 . . . . 5 (𝜑 → (0g‘(oppr𝑄)) = (0g‘(𝑂 /s (𝑂 ~QG 𝐼))))
1712, 16eqtrid 2779 . . . 4 (𝜑 → (0g𝑄) = (0g‘(𝑂 /s (𝑂 ~QG 𝐼))))
1810, 17neeq12d 2998 . . 3 (𝜑 → ((1r𝑄) ≠ (0g𝑄) ↔ (1r‘(𝑂 /s (𝑂 ~QG 𝐼))) ≠ (0g‘(𝑂 /s (𝑂 ~QG 𝐼)))))
19 eqid 2727 . . . . . . 7 (Base‘𝑄) = (Base‘𝑄)
201, 19opprbas 20285 . . . . . 6 (Base‘𝑄) = (Base‘(oppr𝑄))
21 eqid 2727 . . . . . . . . 9 (LIdeal‘𝑅) = (LIdeal‘𝑅)
224, 21lidlss 21113 . . . . . . . 8 (𝐼 ∈ (LIdeal‘𝑅) → 𝐼𝐵)
2313, 22syl 17 . . . . . . 7 (𝜑𝐼𝐵)
244, 5, 6, 7, 23opprqusbas 33217 . . . . . 6 (𝜑 → (Base‘(oppr𝑄)) = (Base‘(𝑂 /s (𝑂 ~QG 𝐼))))
2520, 24eqtrid 2779 . . . . 5 (𝜑 → (Base‘𝑄) = (Base‘(𝑂 /s (𝑂 ~QG 𝐼))))
2617sneqd 4642 . . . . 5 (𝜑 → {(0g𝑄)} = {(0g‘(𝑂 /s (𝑂 ~QG 𝐼)))})
2725, 26difeq12d 4121 . . . 4 (𝜑 → ((Base‘𝑄) ∖ {(0g𝑄)}) = ((Base‘(𝑂 /s (𝑂 ~QG 𝐼))) ∖ {(0g‘(𝑂 /s (𝑂 ~QG 𝐼)))}))
2825adantr 479 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) → (Base‘𝑄) = (Base‘(𝑂 /s (𝑂 ~QG 𝐼))))
297ad2antrr 724 . . . . . . . 8 (((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑦 ∈ (Base‘𝑄)) → 𝑅 ∈ Ring)
308ad2antrr 724 . . . . . . . 8 (((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑦 ∈ (Base‘𝑄)) → 𝐼 ∈ (2Ideal‘𝑅))
31 simplr 767 . . . . . . . . 9 (((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑦 ∈ (Base‘𝑄)) → 𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)}))
3231eldifad 3959 . . . . . . . 8 (((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑦 ∈ (Base‘𝑄)) → 𝑥 ∈ (Base‘𝑄))
33 simpr 483 . . . . . . . 8 (((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑦 ∈ (Base‘𝑄)) → 𝑦 ∈ (Base‘𝑄))
344, 5, 6, 29, 30, 19, 32, 33opprqusmulr 33220 . . . . . . 7 (((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑦 ∈ (Base‘𝑄)) → (𝑥(.r‘(oppr𝑄))𝑦) = (𝑥(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑦))
3510ad2antrr 724 . . . . . . 7 (((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑦 ∈ (Base‘𝑄)) → (1r𝑄) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼))))
3634, 35eqeq12d 2743 . . . . . 6 (((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑦 ∈ (Base‘𝑄)) → ((𝑥(.r‘(oppr𝑄))𝑦) = (1r𝑄) ↔ (𝑥(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑦) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼)))))
374, 5, 6, 29, 30, 19, 33, 32opprqusmulr 33220 . . . . . . 7 (((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑦 ∈ (Base‘𝑄)) → (𝑦(.r‘(oppr𝑄))𝑥) = (𝑦(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥))
3837, 35eqeq12d 2743 . . . . . 6 (((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑦 ∈ (Base‘𝑄)) → ((𝑦(.r‘(oppr𝑄))𝑥) = (1r𝑄) ↔ (𝑦(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼)))))
3936, 38anbi12d 630 . . . . 5 (((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑦 ∈ (Base‘𝑄)) → (((𝑥(.r‘(oppr𝑄))𝑦) = (1r𝑄) ∧ (𝑦(.r‘(oppr𝑄))𝑥) = (1r𝑄)) ↔ ((𝑥(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑦) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼))) ∧ (𝑦(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼))))))
4028, 39rexeqbidva 3324 . . . 4 ((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) → (∃𝑦 ∈ (Base‘𝑄)((𝑥(.r‘(oppr𝑄))𝑦) = (1r𝑄) ∧ (𝑦(.r‘(oppr𝑄))𝑥) = (1r𝑄)) ↔ ∃𝑦 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))((𝑥(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑦) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼))) ∧ (𝑦(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼))))))
4127, 40raleqbidva 3323 . . 3 (𝜑 → (∀𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})∃𝑦 ∈ (Base‘𝑄)((𝑥(.r‘(oppr𝑄))𝑦) = (1r𝑄) ∧ (𝑦(.r‘(oppr𝑄))𝑥) = (1r𝑄)) ↔ ∀𝑥 ∈ ((Base‘(𝑂 /s (𝑂 ~QG 𝐼))) ∖ {(0g‘(𝑂 /s (𝑂 ~QG 𝐼)))})∃𝑦 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))((𝑥(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑦) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼))) ∧ (𝑦(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼))))))
4218, 41anbi12d 630 . 2 (𝜑 → (((1r𝑄) ≠ (0g𝑄) ∧ ∀𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})∃𝑦 ∈ (Base‘𝑄)((𝑥(.r‘(oppr𝑄))𝑦) = (1r𝑄) ∧ (𝑦(.r‘(oppr𝑄))𝑥) = (1r𝑄))) ↔ ((1r‘(𝑂 /s (𝑂 ~QG 𝐼))) ≠ (0g‘(𝑂 /s (𝑂 ~QG 𝐼))) ∧ ∀𝑥 ∈ ((Base‘(𝑂 /s (𝑂 ~QG 𝐼))) ∖ {(0g‘(𝑂 /s (𝑂 ~QG 𝐼)))})∃𝑦 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))((𝑥(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑦) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼))) ∧ (𝑦(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼)))))))
43 eqid 2727 . . 3 (.r‘(oppr𝑄)) = (.r‘(oppr𝑄))
44 eqid 2727 . . . 4 (Unit‘𝑄) = (Unit‘𝑄)
4544, 1opprunit 20321 . . 3 (Unit‘𝑄) = (Unit‘(oppr𝑄))
46 eqid 2727 . . . . . 6 (2Ideal‘𝑅) = (2Ideal‘𝑅)
476, 46qusring 21174 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → 𝑄 ∈ Ring)
487, 8, 47syl2anc 582 . . . 4 (𝜑𝑄 ∈ Ring)
491opprring 20291 . . . 4 (𝑄 ∈ Ring → (oppr𝑄) ∈ Ring)
5048, 49syl 17 . . 3 (𝜑 → (oppr𝑄) ∈ Ring)
5120, 12, 3, 43, 45, 50isdrng4 32980 . 2 (𝜑 → ((oppr𝑄) ∈ DivRing ↔ ((1r𝑄) ≠ (0g𝑄) ∧ ∀𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})∃𝑦 ∈ (Base‘𝑄)((𝑥(.r‘(oppr𝑄))𝑦) = (1r𝑄) ∧ (𝑦(.r‘(oppr𝑄))𝑥) = (1r𝑄)))))
52 eqid 2727 . . 3 (Base‘(𝑂 /s (𝑂 ~QG 𝐼))) = (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))
53 eqid 2727 . . 3 (0g‘(𝑂 /s (𝑂 ~QG 𝐼))) = (0g‘(𝑂 /s (𝑂 ~QG 𝐼)))
54 eqid 2727 . . 3 (1r‘(𝑂 /s (𝑂 ~QG 𝐼))) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼)))
55 eqid 2727 . . 3 (.r‘(𝑂 /s (𝑂 ~QG 𝐼))) = (.r‘(𝑂 /s (𝑂 ~QG 𝐼)))
56 eqid 2727 . . 3 (Unit‘(𝑂 /s (𝑂 ~QG 𝐼))) = (Unit‘(𝑂 /s (𝑂 ~QG 𝐼)))
575opprring 20291 . . . . 5 (𝑅 ∈ Ring → 𝑂 ∈ Ring)
587, 57syl 17 . . . 4 (𝜑𝑂 ∈ Ring)
595, 7oppr2idl 33215 . . . . 5 (𝜑 → (2Ideal‘𝑅) = (2Ideal‘𝑂))
608, 59eleqtrd 2830 . . . 4 (𝜑𝐼 ∈ (2Ideal‘𝑂))
61 eqid 2727 . . . . 5 (𝑂 /s (𝑂 ~QG 𝐼)) = (𝑂 /s (𝑂 ~QG 𝐼))
62 eqid 2727 . . . . 5 (2Ideal‘𝑂) = (2Ideal‘𝑂)
6361, 62qusring 21174 . . . 4 ((𝑂 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑂)) → (𝑂 /s (𝑂 ~QG 𝐼)) ∈ Ring)
6458, 60, 63syl2anc 582 . . 3 (𝜑 → (𝑂 /s (𝑂 ~QG 𝐼)) ∈ Ring)
6552, 53, 54, 55, 56, 64isdrng4 32980 . 2 (𝜑 → ((𝑂 /s (𝑂 ~QG 𝐼)) ∈ DivRing ↔ ((1r‘(𝑂 /s (𝑂 ~QG 𝐼))) ≠ (0g‘(𝑂 /s (𝑂 ~QG 𝐼))) ∧ ∀𝑥 ∈ ((Base‘(𝑂 /s (𝑂 ~QG 𝐼))) ∖ {(0g‘(𝑂 /s (𝑂 ~QG 𝐼)))})∃𝑦 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))((𝑥(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑦) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼))) ∧ (𝑦(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼)))))))
6642, 51, 653bitr4d 310 1 (𝜑 → ((oppr𝑄) ∈ DivRing ↔ (𝑂 /s (𝑂 ~QG 𝐼)) ∈ DivRing))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2936  wral 3057  wrex 3066  cdif 3944  wss 3947  {csn 4630  cfv 6551  (class class class)co 7424  Basecbs 17185  .rcmulr 17239  0gc0g 17426   /s cqus 17492  NrmSGrpcnsg 19081   ~QG cqg 19082  1rcur 20126  Ringcrg 20178  opprcoppr 20277  Unitcui 20299  DivRingcdr 20629  LIdealclidl 21107  2Idealc2idl 21148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-tpos 8236  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-er 8729  df-ec 8731  df-qs 8735  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-sup 9471  df-inf 9472  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12509  df-z 12595  df-dec 12714  df-uz 12859  df-fz 13523  df-struct 17121  df-sets 17138  df-slot 17156  df-ndx 17168  df-base 17186  df-ress 17215  df-plusg 17251  df-mulr 17252  df-sca 17254  df-vsca 17255  df-ip 17256  df-tset 17257  df-ple 17258  df-ds 17260  df-0g 17428  df-imas 17495  df-qus 17496  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-grp 18898  df-minusg 18899  df-sbg 18900  df-subg 19083  df-nsg 19084  df-eqg 19085  df-cmn 19742  df-abl 19743  df-mgp 20080  df-rng 20098  df-ur 20127  df-ring 20180  df-oppr 20278  df-dvdsr 20301  df-unit 20302  df-invr 20332  df-subrg 20513  df-drng 20631  df-lmod 20750  df-lss 20821  df-sra 21063  df-rgmod 21064  df-lidl 21109  df-2idl 21149
This theorem is referenced by:  qsdrng  33226
  Copyright terms: Public domain W3C validator
OSZAR »