![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pfxmpt | Structured version Visualization version GIF version |
Description: Value of the prefix extractor as a mapping. (Contributed by AV, 2-May-2020.) |
Ref | Expression |
---|---|
pfxmpt | ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 prefix 𝐿) = (𝑥 ∈ (0..^𝐿) ↦ (𝑆‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfznn0 13627 | . . 3 ⊢ (𝐿 ∈ (0...(♯‘𝑆)) → 𝐿 ∈ ℕ0) | |
2 | pfxval 14656 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = (𝑆 substr 〈0, 𝐿〉)) | |
3 | 1, 2 | sylan2 592 | . 2 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 prefix 𝐿) = (𝑆 substr 〈0, 𝐿〉)) |
4 | simpl 482 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → 𝑆 ∈ Word 𝐴) | |
5 | 1 | adantl 481 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → 𝐿 ∈ ℕ0) |
6 | 0elfz 13631 | . . . 4 ⊢ (𝐿 ∈ ℕ0 → 0 ∈ (0...𝐿)) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → 0 ∈ (0...𝐿)) |
8 | simpr 484 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → 𝐿 ∈ (0...(♯‘𝑆))) | |
9 | swrdval2 14629 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 0 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr 〈0, 𝐿〉) = (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0)))) | |
10 | 4, 7, 8, 9 | syl3anc 1369 | . 2 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr 〈0, 𝐿〉) = (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0)))) |
11 | nn0cn 12513 | . . . . . . 7 ⊢ (𝐿 ∈ ℕ0 → 𝐿 ∈ ℂ) | |
12 | 11 | subid1d 11591 | . . . . . 6 ⊢ (𝐿 ∈ ℕ0 → (𝐿 − 0) = 𝐿) |
13 | 1, 12 | syl 17 | . . . . 5 ⊢ (𝐿 ∈ (0...(♯‘𝑆)) → (𝐿 − 0) = 𝐿) |
14 | 13 | oveq2d 7436 | . . . 4 ⊢ (𝐿 ∈ (0...(♯‘𝑆)) → (0..^(𝐿 − 0)) = (0..^𝐿)) |
15 | 14 | adantl 481 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (0..^(𝐿 − 0)) = (0..^𝐿)) |
16 | elfzonn0 13710 | . . . . . 6 ⊢ (𝑥 ∈ (0..^(𝐿 − 0)) → 𝑥 ∈ ℕ0) | |
17 | nn0cn 12513 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ0 → 𝑥 ∈ ℂ) | |
18 | 17 | addridd 11445 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 → (𝑥 + 0) = 𝑥) |
19 | 16, 18 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ (0..^(𝐿 − 0)) → (𝑥 + 0) = 𝑥) |
20 | 19 | fveq2d 6901 | . . . 4 ⊢ (𝑥 ∈ (0..^(𝐿 − 0)) → (𝑆‘(𝑥 + 0)) = (𝑆‘𝑥)) |
21 | 20 | adantl 481 | . . 3 ⊢ (((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^(𝐿 − 0))) → (𝑆‘(𝑥 + 0)) = (𝑆‘𝑥)) |
22 | 15, 21 | mpteq12dva 5237 | . 2 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0))) = (𝑥 ∈ (0..^𝐿) ↦ (𝑆‘𝑥))) |
23 | 3, 10, 22 | 3eqtrd 2772 | 1 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 prefix 𝐿) = (𝑥 ∈ (0..^𝐿) ↦ (𝑆‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 〈cop 4635 ↦ cmpt 5231 ‘cfv 6548 (class class class)co 7420 0cc0 11139 + caddc 11142 − cmin 11475 ℕ0cn0 12503 ...cfz 13517 ..^cfzo 13660 ♯chash 14322 Word cword 14497 substr csubstr 14623 prefix cpfx 14653 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-n0 12504 df-z 12590 df-uz 12854 df-fz 13518 df-fzo 13661 df-hash 14323 df-word 14498 df-substr 14624 df-pfx 14654 |
This theorem is referenced by: pfxres 14662 pfxf 14663 psgnunilem5 19449 |
Copyright terms: Public domain | W3C validator |