![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringccat | Structured version Visualization version GIF version |
Description: The category of unital rings is a category. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 9-Mar-2020.) |
Ref | Expression |
---|---|
ringccat.c | ⊢ 𝐶 = (RingCat‘𝑈) |
Ref | Expression |
---|---|
ringccat | ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringccat.c | . . 3 ⊢ 𝐶 = (RingCat‘𝑈) | |
2 | id 22 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝑈 ∈ 𝑉) | |
3 | eqidd 2729 | . . 3 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Ring) = (𝑈 ∩ Ring)) | |
4 | eqidd 2729 | . . 3 ⊢ (𝑈 ∈ 𝑉 → ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) = ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))) | |
5 | 1, 2, 3, 4 | ringcval 20579 | . 2 ⊢ (𝑈 ∈ 𝑉 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))))) |
6 | eqid 2728 | . . 3 ⊢ ((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))) = ((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))) | |
7 | eqid 2728 | . . . 4 ⊢ (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈) | |
8 | eqidd 2729 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (Ring ∩ 𝑈) = (Ring ∩ 𝑈)) | |
9 | incom 4201 | . . . . . . 7 ⊢ (𝑈 ∩ Ring) = (Ring ∩ 𝑈) | |
10 | 9 | a1i 11 | . . . . . 6 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Ring) = (Ring ∩ 𝑈)) |
11 | 10 | sqxpeqd 5710 | . . . . 5 ⊢ (𝑈 ∈ 𝑉 → ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)) = ((Ring ∩ 𝑈) × (Ring ∩ 𝑈))) |
12 | 11 | reseq2d 5985 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) = ( RingHom ↾ ((Ring ∩ 𝑈) × (Ring ∩ 𝑈)))) |
13 | 7, 2, 8, 12 | rhmsubcsetc 20594 | . . 3 ⊢ (𝑈 ∈ 𝑉 → ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) ∈ (Subcat‘(ExtStrCat‘𝑈))) |
14 | 6, 13 | subccat 17833 | . 2 ⊢ (𝑈 ∈ 𝑉 → ((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))) ∈ Cat) |
15 | 5, 14 | eqeltrd 2829 | 1 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∩ cin 3946 × cxp 5676 ↾ cres 5680 ‘cfv 6548 (class class class)co 7420 Catccat 17643 ↾cat cresc 17790 ExtStrCatcestrc 18111 Ringcrg 20172 RingHom crh 20407 RingCatcringc 20577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-er 8724 df-map 8846 df-pm 8847 df-ixp 8916 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-fz 13517 df-struct 17115 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-hom 17256 df-cco 17257 df-0g 17422 df-cat 17647 df-cid 17648 df-homf 17649 df-ssc 17792 df-resc 17793 df-subc 17794 df-estrc 18112 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-mhm 18739 df-grp 18892 df-ghm 19167 df-mgp 20074 df-ur 20121 df-ring 20174 df-rhm 20410 df-ringc 20578 |
This theorem is referenced by: ringcsect 20602 ringcinv 20603 ringciso 20604 zrtermoringc 20607 zrninitoringc 20608 srhmsubc 20612 irinitoringc 21404 nzerooringczr 21405 funcringcsetcALTV2 47361 |
Copyright terms: Public domain | W3C validator |