![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rngsubdir | Structured version Visualization version GIF version |
Description: Ring multiplication distributes over subtraction. (subdir 11678 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) Generalization of ringsubdir 20243. (Revised by AV, 23-Feb-2025.) |
Ref | Expression |
---|---|
rngsubdi.b | ⊢ 𝐵 = (Base‘𝑅) |
rngsubdi.t | ⊢ · = (.r‘𝑅) |
rngsubdi.m | ⊢ − = (-g‘𝑅) |
rngsubdi.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
rngsubdi.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
rngsubdi.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
rngsubdi.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
rngsubdir | ⊢ (𝜑 → ((𝑋 − 𝑌) · 𝑍) = ((𝑋 · 𝑍) − (𝑌 · 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngsubdi.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
2 | rngsubdi.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | rngsubdi.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
4 | eqid 2728 | . . . . 5 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
5 | rnggrp 20097 | . . . . . 6 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
6 | 1, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Grp) |
7 | rngsubdi.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
8 | 3, 4, 6, 7 | grpinvcld 18944 | . . . 4 ⊢ (𝜑 → ((invg‘𝑅)‘𝑌) ∈ 𝐵) |
9 | rngsubdi.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
10 | eqid 2728 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
11 | rngsubdi.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
12 | 3, 10, 11 | rngdir 20100 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ (𝑋 ∈ 𝐵 ∧ ((invg‘𝑅)‘𝑌) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌)) · 𝑍) = ((𝑋 · 𝑍)(+g‘𝑅)(((invg‘𝑅)‘𝑌) · 𝑍))) |
13 | 1, 2, 8, 9, 12 | syl13anc 1370 | . . 3 ⊢ (𝜑 → ((𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌)) · 𝑍) = ((𝑋 · 𝑍)(+g‘𝑅)(((invg‘𝑅)‘𝑌) · 𝑍))) |
14 | 3, 11, 4, 1, 7, 9 | rngmneg1 20106 | . . . 4 ⊢ (𝜑 → (((invg‘𝑅)‘𝑌) · 𝑍) = ((invg‘𝑅)‘(𝑌 · 𝑍))) |
15 | 14 | oveq2d 7436 | . . 3 ⊢ (𝜑 → ((𝑋 · 𝑍)(+g‘𝑅)(((invg‘𝑅)‘𝑌) · 𝑍)) = ((𝑋 · 𝑍)(+g‘𝑅)((invg‘𝑅)‘(𝑌 · 𝑍)))) |
16 | 13, 15 | eqtrd 2768 | . 2 ⊢ (𝜑 → ((𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌)) · 𝑍) = ((𝑋 · 𝑍)(+g‘𝑅)((invg‘𝑅)‘(𝑌 · 𝑍)))) |
17 | rngsubdi.m | . . . . 5 ⊢ − = (-g‘𝑅) | |
18 | 3, 10, 4, 17 | grpsubval 18941 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌))) |
19 | 2, 7, 18 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑋 − 𝑌) = (𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌))) |
20 | 19 | oveq1d 7435 | . 2 ⊢ (𝜑 → ((𝑋 − 𝑌) · 𝑍) = ((𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌)) · 𝑍)) |
21 | 3, 11 | rngcl 20103 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 · 𝑍) ∈ 𝐵) |
22 | 1, 2, 9, 21 | syl3anc 1369 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑍) ∈ 𝐵) |
23 | 3, 11 | rngcl 20103 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 · 𝑍) ∈ 𝐵) |
24 | 1, 7, 9, 23 | syl3anc 1369 | . . 3 ⊢ (𝜑 → (𝑌 · 𝑍) ∈ 𝐵) |
25 | 3, 10, 4, 17 | grpsubval 18941 | . . 3 ⊢ (((𝑋 · 𝑍) ∈ 𝐵 ∧ (𝑌 · 𝑍) ∈ 𝐵) → ((𝑋 · 𝑍) − (𝑌 · 𝑍)) = ((𝑋 · 𝑍)(+g‘𝑅)((invg‘𝑅)‘(𝑌 · 𝑍)))) |
26 | 22, 24, 25 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝑋 · 𝑍) − (𝑌 · 𝑍)) = ((𝑋 · 𝑍)(+g‘𝑅)((invg‘𝑅)‘(𝑌 · 𝑍)))) |
27 | 16, 20, 26 | 3eqtr4d 2778 | 1 ⊢ (𝜑 → ((𝑋 − 𝑌) · 𝑍) = ((𝑋 · 𝑍) − (𝑌 · 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ‘cfv 6548 (class class class)co 7420 Basecbs 17179 +gcplusg 17232 .rcmulr 17233 Grpcgrp 18889 invgcminusg 18890 -gcsg 18891 Rngcrng 20091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-plusg 17245 df-0g 17422 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-grp 18892 df-minusg 18893 df-sbg 18894 df-abl 19737 df-mgp 20074 df-rng 20092 |
This theorem is referenced by: ringsubdir 20243 2idlcpblrng 21164 |
Copyright terms: Public domain | W3C validator |