MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngsubdir Structured version   Visualization version   GIF version

Theorem rngsubdir 20111
Description: Ring multiplication distributes over subtraction. (subdir 11678 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) Generalization of ringsubdir 20243. (Revised by AV, 23-Feb-2025.)
Hypotheses
Ref Expression
rngsubdi.b 𝐵 = (Base‘𝑅)
rngsubdi.t · = (.r𝑅)
rngsubdi.m = (-g𝑅)
rngsubdi.r (𝜑𝑅 ∈ Rng)
rngsubdi.x (𝜑𝑋𝐵)
rngsubdi.y (𝜑𝑌𝐵)
rngsubdi.z (𝜑𝑍𝐵)
Assertion
Ref Expression
rngsubdir (𝜑 → ((𝑋 𝑌) · 𝑍) = ((𝑋 · 𝑍) (𝑌 · 𝑍)))

Proof of Theorem rngsubdir
StepHypRef Expression
1 rngsubdi.r . . . 4 (𝜑𝑅 ∈ Rng)
2 rngsubdi.x . . . 4 (𝜑𝑋𝐵)
3 rngsubdi.b . . . . 5 𝐵 = (Base‘𝑅)
4 eqid 2728 . . . . 5 (invg𝑅) = (invg𝑅)
5 rnggrp 20097 . . . . . 6 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
61, 5syl 17 . . . . 5 (𝜑𝑅 ∈ Grp)
7 rngsubdi.y . . . . 5 (𝜑𝑌𝐵)
83, 4, 6, 7grpinvcld 18944 . . . 4 (𝜑 → ((invg𝑅)‘𝑌) ∈ 𝐵)
9 rngsubdi.z . . . 4 (𝜑𝑍𝐵)
10 eqid 2728 . . . . 5 (+g𝑅) = (+g𝑅)
11 rngsubdi.t . . . . 5 · = (.r𝑅)
123, 10, 11rngdir 20100 . . . 4 ((𝑅 ∈ Rng ∧ (𝑋𝐵 ∧ ((invg𝑅)‘𝑌) ∈ 𝐵𝑍𝐵)) → ((𝑋(+g𝑅)((invg𝑅)‘𝑌)) · 𝑍) = ((𝑋 · 𝑍)(+g𝑅)(((invg𝑅)‘𝑌) · 𝑍)))
131, 2, 8, 9, 12syl13anc 1370 . . 3 (𝜑 → ((𝑋(+g𝑅)((invg𝑅)‘𝑌)) · 𝑍) = ((𝑋 · 𝑍)(+g𝑅)(((invg𝑅)‘𝑌) · 𝑍)))
143, 11, 4, 1, 7, 9rngmneg1 20106 . . . 4 (𝜑 → (((invg𝑅)‘𝑌) · 𝑍) = ((invg𝑅)‘(𝑌 · 𝑍)))
1514oveq2d 7436 . . 3 (𝜑 → ((𝑋 · 𝑍)(+g𝑅)(((invg𝑅)‘𝑌) · 𝑍)) = ((𝑋 · 𝑍)(+g𝑅)((invg𝑅)‘(𝑌 · 𝑍))))
1613, 15eqtrd 2768 . 2 (𝜑 → ((𝑋(+g𝑅)((invg𝑅)‘𝑌)) · 𝑍) = ((𝑋 · 𝑍)(+g𝑅)((invg𝑅)‘(𝑌 · 𝑍))))
17 rngsubdi.m . . . . 5 = (-g𝑅)
183, 10, 4, 17grpsubval 18941 . . . 4 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋(+g𝑅)((invg𝑅)‘𝑌)))
192, 7, 18syl2anc 583 . . 3 (𝜑 → (𝑋 𝑌) = (𝑋(+g𝑅)((invg𝑅)‘𝑌)))
2019oveq1d 7435 . 2 (𝜑 → ((𝑋 𝑌) · 𝑍) = ((𝑋(+g𝑅)((invg𝑅)‘𝑌)) · 𝑍))
213, 11rngcl 20103 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑍𝐵) → (𝑋 · 𝑍) ∈ 𝐵)
221, 2, 9, 21syl3anc 1369 . . 3 (𝜑 → (𝑋 · 𝑍) ∈ 𝐵)
233, 11rngcl 20103 . . . 4 ((𝑅 ∈ Rng ∧ 𝑌𝐵𝑍𝐵) → (𝑌 · 𝑍) ∈ 𝐵)
241, 7, 9, 23syl3anc 1369 . . 3 (𝜑 → (𝑌 · 𝑍) ∈ 𝐵)
253, 10, 4, 17grpsubval 18941 . . 3 (((𝑋 · 𝑍) ∈ 𝐵 ∧ (𝑌 · 𝑍) ∈ 𝐵) → ((𝑋 · 𝑍) (𝑌 · 𝑍)) = ((𝑋 · 𝑍)(+g𝑅)((invg𝑅)‘(𝑌 · 𝑍))))
2622, 24, 25syl2anc 583 . 2 (𝜑 → ((𝑋 · 𝑍) (𝑌 · 𝑍)) = ((𝑋 · 𝑍)(+g𝑅)((invg𝑅)‘(𝑌 · 𝑍))))
2716, 20, 263eqtr4d 2778 1 (𝜑 → ((𝑋 𝑌) · 𝑍) = ((𝑋 · 𝑍) (𝑌 · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  cfv 6548  (class class class)co 7420  Basecbs 17179  +gcplusg 17232  .rcmulr 17233  Grpcgrp 18889  invgcminusg 18890  -gcsg 18891  Rngcrng 20091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-er 8724  df-en 8964  df-dom 8965  df-sdom 8966  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-plusg 17245  df-0g 17422  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-grp 18892  df-minusg 18893  df-sbg 18894  df-abl 19737  df-mgp 20074  df-rng 20092
This theorem is referenced by:  ringsubdir  20243  2idlcpblrng  21164
  Copyright terms: Public domain W3C validator
OSZAR »