Proof of Theorem 2idlcpblrng
Step | Hyp | Ref
| Expression |
1 | | simpl1 1189 |
. . . 4
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝑅 ∈ Rng) |
2 | | simpl3 1191 |
. . . . . . . 8
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝑆 ∈ (SubGrp‘𝑅)) |
3 | | 2idlcpblrng.x |
. . . . . . . . 9
⊢ 𝑋 = (Base‘𝑅) |
4 | | 2idlcpblrng.r |
. . . . . . . . 9
⊢ 𝐸 = (𝑅 ~QG 𝑆) |
5 | 3, 4 | eqger 19126 |
. . . . . . . 8
⊢ (𝑆 ∈ (SubGrp‘𝑅) → 𝐸 Er 𝑋) |
6 | 2, 5 | syl 17 |
. . . . . . 7
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝐸 Er 𝑋) |
7 | | simprl 770 |
. . . . . . 7
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝐴𝐸𝐶) |
8 | 6, 7 | ersym 8730 |
. . . . . 6
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝐶𝐸𝐴) |
9 | | rngabl 20088 |
. . . . . . . 8
⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) |
10 | 9 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝑅 ∈ Abel) |
11 | | eqid 2728 |
. . . . . . . . . . . 12
⊢
(LIdeal‘𝑅) =
(LIdeal‘𝑅) |
12 | | eqid 2728 |
. . . . . . . . . . . 12
⊢
(oppr‘𝑅) = (oppr‘𝑅) |
13 | | eqid 2728 |
. . . . . . . . . . . 12
⊢
(LIdeal‘(oppr‘𝑅)) =
(LIdeal‘(oppr‘𝑅)) |
14 | | 2idlcpblrng.i |
. . . . . . . . . . . 12
⊢ 𝐼 = (2Ideal‘𝑅) |
15 | 11, 12, 13, 14 | 2idlelb 21140 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ 𝐼 ↔ (𝑆 ∈ (LIdeal‘𝑅) ∧ 𝑆 ∈
(LIdeal‘(oppr‘𝑅)))) |
16 | 15 | simplbi 497 |
. . . . . . . . . 10
⊢ (𝑆 ∈ 𝐼 → 𝑆 ∈ (LIdeal‘𝑅)) |
17 | 16 | 3ad2ant2 1132 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝑆 ∈ (LIdeal‘𝑅)) |
18 | 17 | adantr 480 |
. . . . . . . 8
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝑆 ∈ (LIdeal‘𝑅)) |
19 | 3, 11 | lidlss 21101 |
. . . . . . . 8
⊢ (𝑆 ∈ (LIdeal‘𝑅) → 𝑆 ⊆ 𝑋) |
20 | 18, 19 | syl 17 |
. . . . . . 7
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝑆 ⊆ 𝑋) |
21 | | eqid 2728 |
. . . . . . . 8
⊢
(-g‘𝑅) = (-g‘𝑅) |
22 | 3, 21, 4 | eqgabl 19782 |
. . . . . . 7
⊢ ((𝑅 ∈ Abel ∧ 𝑆 ⊆ 𝑋) → (𝐶𝐸𝐴 ↔ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴(-g‘𝑅)𝐶) ∈ 𝑆))) |
23 | 10, 20, 22 | syl2an2r 684 |
. . . . . 6
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐶𝐸𝐴 ↔ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴(-g‘𝑅)𝐶) ∈ 𝑆))) |
24 | 8, 23 | mpbid 231 |
. . . . 5
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴(-g‘𝑅)𝐶) ∈ 𝑆)) |
25 | 24 | simp2d 1141 |
. . . 4
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝐴 ∈ 𝑋) |
26 | | simprr 772 |
. . . . . 6
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝐵𝐸𝐷) |
27 | 3, 21, 4 | eqgabl 19782 |
. . . . . . 7
⊢ ((𝑅 ∈ Abel ∧ 𝑆 ⊆ 𝑋) → (𝐵𝐸𝐷 ↔ (𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ∧ (𝐷(-g‘𝑅)𝐵) ∈ 𝑆))) |
28 | 10, 20, 27 | syl2an2r 684 |
. . . . . 6
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐵𝐸𝐷 ↔ (𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ∧ (𝐷(-g‘𝑅)𝐵) ∈ 𝑆))) |
29 | 26, 28 | mpbid 231 |
. . . . 5
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ∧ (𝐷(-g‘𝑅)𝐵) ∈ 𝑆)) |
30 | 29 | simp1d 1140 |
. . . 4
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝐵 ∈ 𝑋) |
31 | | 2idlcpblrng.t |
. . . . 5
⊢ · =
(.r‘𝑅) |
32 | 3, 31 | rngcl 20097 |
. . . 4
⊢ ((𝑅 ∈ Rng ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 · 𝐵) ∈ 𝑋) |
33 | 1, 25, 30, 32 | syl3anc 1369 |
. . 3
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐴 · 𝐵) ∈ 𝑋) |
34 | 24 | simp1d 1140 |
. . . 4
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝐶 ∈ 𝑋) |
35 | 29 | simp2d 1141 |
. . . 4
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝐷 ∈ 𝑋) |
36 | 3, 31 | rngcl 20097 |
. . . 4
⊢ ((𝑅 ∈ Rng ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) → (𝐶 · 𝐷) ∈ 𝑋) |
37 | 1, 34, 35, 36 | syl3anc 1369 |
. . 3
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐶 · 𝐷) ∈ 𝑋) |
38 | | rnggrp 20091 |
. . . . . . 7
⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) |
39 | 38 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝑅 ∈ Grp) |
40 | 39 | adantr 480 |
. . . . 5
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝑅 ∈ Grp) |
41 | 3, 31 | rngcl 20097 |
. . . . . 6
⊢ ((𝑅 ∈ Rng ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐶 · 𝐵) ∈ 𝑋) |
42 | 1, 34, 30, 41 | syl3anc 1369 |
. . . . 5
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐶 · 𝐵) ∈ 𝑋) |
43 | 3, 21 | grpnnncan2 18986 |
. . . . 5
⊢ ((𝑅 ∈ Grp ∧ ((𝐶 · 𝐷) ∈ 𝑋 ∧ (𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐶 · 𝐵) ∈ 𝑋)) → (((𝐶 · 𝐷)(-g‘𝑅)(𝐶 · 𝐵))(-g‘𝑅)((𝐴 · 𝐵)(-g‘𝑅)(𝐶 · 𝐵))) = ((𝐶 · 𝐷)(-g‘𝑅)(𝐴 · 𝐵))) |
44 | 40, 37, 33, 42, 43 | syl13anc 1370 |
. . . 4
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (((𝐶 · 𝐷)(-g‘𝑅)(𝐶 · 𝐵))(-g‘𝑅)((𝐴 · 𝐵)(-g‘𝑅)(𝐶 · 𝐵))) = ((𝐶 · 𝐷)(-g‘𝑅)(𝐴 · 𝐵))) |
45 | 3, 31, 21, 1, 34, 35, 30 | rngsubdi 20104 |
. . . . . 6
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐶 · (𝐷(-g‘𝑅)𝐵)) = ((𝐶 · 𝐷)(-g‘𝑅)(𝐶 · 𝐵))) |
46 | | eqid 2728 |
. . . . . . . . . 10
⊢
(0g‘𝑅) = (0g‘𝑅) |
47 | 46 | subg0cl 19082 |
. . . . . . . . 9
⊢ (𝑆 ∈ (SubGrp‘𝑅) →
(0g‘𝑅)
∈ 𝑆) |
48 | 47 | 3ad2ant3 1133 |
. . . . . . . 8
⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → (0g‘𝑅) ∈ 𝑆) |
49 | 48 | adantr 480 |
. . . . . . 7
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (0g‘𝑅) ∈ 𝑆) |
50 | 29 | simp3d 1142 |
. . . . . . 7
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐷(-g‘𝑅)𝐵) ∈ 𝑆) |
51 | 46, 3, 31, 11 | rnglidlmcl 21105 |
. . . . . . 7
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ (LIdeal‘𝑅) ∧
(0g‘𝑅)
∈ 𝑆) ∧ (𝐶 ∈ 𝑋 ∧ (𝐷(-g‘𝑅)𝐵) ∈ 𝑆)) → (𝐶 · (𝐷(-g‘𝑅)𝐵)) ∈ 𝑆) |
52 | 1, 18, 49, 34, 50, 51 | syl32anc 1376 |
. . . . . 6
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐶 · (𝐷(-g‘𝑅)𝐵)) ∈ 𝑆) |
53 | 45, 52 | eqeltrrd 2830 |
. . . . 5
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → ((𝐶 · 𝐷)(-g‘𝑅)(𝐶 · 𝐵)) ∈ 𝑆) |
54 | | eqid 2728 |
. . . . . . . 8
⊢
(.r‘(oppr‘𝑅)) =
(.r‘(oppr‘𝑅)) |
55 | 3, 31, 12, 54 | opprmul 20269 |
. . . . . . 7
⊢ (𝐵(.r‘(oppr‘𝑅))(𝐴(-g‘𝑅)𝐶))
= ((𝐴(-g‘𝑅)𝐶) · 𝐵) |
56 | 3, 31, 21, 1, 25, 34, 30 | rngsubdir 20105 |
. . . . . . 7
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → ((𝐴(-g‘𝑅)𝐶) · 𝐵) = ((𝐴 · 𝐵)(-g‘𝑅)(𝐶 · 𝐵))) |
57 | 55, 56 | eqtrid 2780 |
. . . . . 6
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐵(.r‘(oppr‘𝑅))(𝐴(-g‘𝑅)𝐶))
= ((𝐴 · 𝐵)(-g‘𝑅)(𝐶
· 𝐵))) |
58 | 12 | opprrng 20277 |
. . . . . . . . 9
⊢ (𝑅 ∈ Rng →
(oppr‘𝑅) ∈ Rng) |
59 | 58 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) →
(oppr‘𝑅) ∈ Rng) |
60 | 59 | adantr 480 |
. . . . . . 7
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) →
(oppr‘𝑅) ∈ Rng) |
61 | 15 | simprbi 496 |
. . . . . . . . 9
⊢ (𝑆 ∈ 𝐼 → 𝑆 ∈
(LIdeal‘(oppr‘𝑅))) |
62 | 61 | 3ad2ant2 1132 |
. . . . . . . 8
⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝑆 ∈
(LIdeal‘(oppr‘𝑅))) |
63 | 62 | adantr 480 |
. . . . . . 7
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝑆 ∈
(LIdeal‘(oppr‘𝑅))) |
64 | 24 | simp3d 1142 |
. . . . . . 7
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐴(-g‘𝑅)𝐶) ∈ 𝑆) |
65 | 12, 46 | oppr0 20281 |
. . . . . . . 8
⊢
(0g‘𝑅) =
(0g‘(oppr‘𝑅)) |
66 | 12, 3 | opprbas 20273 |
. . . . . . . 8
⊢ 𝑋 =
(Base‘(oppr‘𝑅)) |
67 | 65, 66, 54, 13 | rnglidlmcl 21105 |
. . . . . . 7
⊢
((((oppr‘𝑅) ∈ Rng ∧ 𝑆 ∈
(LIdeal‘(oppr‘𝑅)) ∧ (0g‘𝑅) ∈ 𝑆) ∧ (𝐵 ∈ 𝑋 ∧ (𝐴(-g‘𝑅)𝐶) ∈ 𝑆)) → (𝐵(.r‘(oppr‘𝑅))(𝐴(-g‘𝑅)𝐶))
∈ 𝑆) |
68 | 60, 63, 49, 30, 64, 67 | syl32anc 1376 |
. . . . . 6
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐵(.r‘(oppr‘𝑅))(𝐴(-g‘𝑅)𝐶))
∈ 𝑆) |
69 | 57, 68 | eqeltrrd 2830 |
. . . . 5
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → ((𝐴 · 𝐵)(-g‘𝑅)(𝐶 · 𝐵)) ∈ 𝑆) |
70 | 21 | subgsubcl 19085 |
. . . . 5
⊢ ((𝑆 ∈ (SubGrp‘𝑅) ∧ ((𝐶 · 𝐷)(-g‘𝑅)(𝐶 · 𝐵)) ∈ 𝑆 ∧ ((𝐴 · 𝐵)(-g‘𝑅)(𝐶 · 𝐵)) ∈ 𝑆) → (((𝐶 · 𝐷)(-g‘𝑅)(𝐶 · 𝐵))(-g‘𝑅)((𝐴 · 𝐵)(-g‘𝑅)(𝐶 · 𝐵))) ∈ 𝑆) |
71 | 2, 53, 69, 70 | syl3anc 1369 |
. . . 4
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (((𝐶 · 𝐷)(-g‘𝑅)(𝐶 · 𝐵))(-g‘𝑅)((𝐴 · 𝐵)(-g‘𝑅)(𝐶 · 𝐵))) ∈ 𝑆) |
72 | 44, 71 | eqeltrrd 2830 |
. . 3
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → ((𝐶 · 𝐷)(-g‘𝑅)(𝐴 · 𝐵)) ∈ 𝑆) |
73 | 3, 21, 4 | eqgabl 19782 |
. . . 4
⊢ ((𝑅 ∈ Abel ∧ 𝑆 ⊆ 𝑋) → ((𝐴 · 𝐵)𝐸(𝐶 · 𝐷) ↔ ((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐶 · 𝐷) ∈ 𝑋 ∧ ((𝐶 · 𝐷)(-g‘𝑅)(𝐴 · 𝐵)) ∈ 𝑆))) |
74 | 10, 20, 73 | syl2an2r 684 |
. . 3
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → ((𝐴 · 𝐵)𝐸(𝐶 · 𝐷) ↔ ((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐶 · 𝐷) ∈ 𝑋 ∧ ((𝐶 · 𝐷)(-g‘𝑅)(𝐴 · 𝐵)) ∈ 𝑆))) |
75 | 33, 37, 72, 74 | mpbir3and 1340 |
. 2
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷)) |
76 | 75 | ex 412 |
1
⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → ((𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷))) |