![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrnheibor | Structured version Visualization version GIF version |
Description: Heine-Borel theorem for Euclidean space. A subset of Euclidean space is compact iff it is closed and bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
rrnheibor.1 | ⊢ 𝑋 = (ℝ ↑m 𝐼) |
rrnheibor.2 | ⊢ 𝑀 = ((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) |
rrnheibor.3 | ⊢ 𝑇 = (MetOpen‘𝑀) |
rrnheibor.4 | ⊢ 𝑈 = (MetOpen‘(ℝn‘𝐼)) |
Ref | Expression |
---|---|
rrnheibor | ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrnheibor.1 | . . . . . 6 ⊢ 𝑋 = (ℝ ↑m 𝐼) | |
2 | 1 | rrnmet 37372 | . . . . 5 ⊢ (𝐼 ∈ Fin → (ℝn‘𝐼) ∈ (Met‘𝑋)) |
3 | rrnheibor.2 | . . . . . 6 ⊢ 𝑀 = ((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) | |
4 | metres2 24299 | . . . . . 6 ⊢ (((ℝn‘𝐼) ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → ((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌)) | |
5 | 3, 4 | eqeltrid 2829 | . . . . 5 ⊢ (((ℝn‘𝐼) ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → 𝑀 ∈ (Met‘𝑌)) |
6 | 2, 5 | sylan 578 | . . . 4 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → 𝑀 ∈ (Met‘𝑌)) |
7 | 6 | biantrurd 531 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (𝑇 ∈ Comp ↔ (𝑀 ∈ (Met‘𝑌) ∧ 𝑇 ∈ Comp))) |
8 | rrnheibor.3 | . . . 4 ⊢ 𝑇 = (MetOpen‘𝑀) | |
9 | 8 | heibor 37364 | . . 3 ⊢ ((𝑀 ∈ (Met‘𝑌) ∧ 𝑇 ∈ Comp) ↔ (𝑀 ∈ (CMet‘𝑌) ∧ 𝑀 ∈ (TotBnd‘𝑌))) |
10 | 7, 9 | bitrdi 286 | . 2 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (𝑇 ∈ Comp ↔ (𝑀 ∈ (CMet‘𝑌) ∧ 𝑀 ∈ (TotBnd‘𝑌)))) |
11 | 3 | eleq1i 2816 | . . . 4 ⊢ (𝑀 ∈ (CMet‘𝑌) ↔ ((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) |
12 | 1 | rrncms 37376 | . . . . . 6 ⊢ (𝐼 ∈ Fin → (ℝn‘𝐼) ∈ (CMet‘𝑋)) |
13 | 12 | adantr 479 | . . . . 5 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (ℝn‘𝐼) ∈ (CMet‘𝑋)) |
14 | rrnheibor.4 | . . . . . 6 ⊢ 𝑈 = (MetOpen‘(ℝn‘𝐼)) | |
15 | 14 | cmetss 25274 | . . . . 5 ⊢ ((ℝn‘𝐼) ∈ (CMet‘𝑋) → (((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝑈))) |
16 | 13, 15 | syl 17 | . . . 4 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝑈))) |
17 | 11, 16 | bitrid 282 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (𝑀 ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝑈))) |
18 | 1, 3 | rrntotbnd 37379 | . . . 4 ⊢ (𝐼 ∈ Fin → (𝑀 ∈ (TotBnd‘𝑌) ↔ 𝑀 ∈ (Bnd‘𝑌))) |
19 | 18 | adantr 479 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (𝑀 ∈ (TotBnd‘𝑌) ↔ 𝑀 ∈ (Bnd‘𝑌))) |
20 | 17, 19 | anbi12d 630 | . 2 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → ((𝑀 ∈ (CMet‘𝑌) ∧ 𝑀 ∈ (TotBnd‘𝑌)) ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌)))) |
21 | 10, 20 | bitrd 278 | 1 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ⊆ wss 3945 × cxp 5675 ↾ cres 5679 ‘cfv 6547 (class class class)co 7417 ↑m cmap 8843 Fincfn 8962 ℝcr 11137 Metcmet 21269 MetOpencmopn 21273 Clsdccld 22950 Compccmp 23320 CMetccmet 25212 TotBndctotbnd 37309 Bndcbnd 37310 ℝncrrn 37368 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-inf2 9664 ax-cc 10458 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-isom 6556 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-oadd 8489 df-omul 8490 df-er 8723 df-ec 8725 df-map 8845 df-pm 8846 df-ixp 8915 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-fi 9434 df-sup 9465 df-inf 9466 df-oi 9533 df-card 9962 df-acn 9965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-q 12963 df-rp 13007 df-xneg 13124 df-xadd 13125 df-xmul 13126 df-ico 13362 df-icc 13363 df-fz 13517 df-fzo 13660 df-fl 13789 df-seq 13999 df-exp 14059 df-hash 14322 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-limsup 15447 df-clim 15464 df-rlim 15465 df-sum 15665 df-gz 16898 df-struct 17115 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-mulr 17246 df-starv 17247 df-sca 17248 df-vsca 17249 df-ip 17250 df-tset 17251 df-ple 17252 df-ds 17254 df-unif 17255 df-hom 17256 df-cco 17257 df-rest 17403 df-topn 17404 df-topgen 17424 df-prds 17428 df-pws 17430 df-psmet 21275 df-xmet 21276 df-met 21277 df-bl 21278 df-mopn 21279 df-fbas 21280 df-fg 21281 df-cnfld 21284 df-top 22826 df-topon 22843 df-topsp 22865 df-bases 22879 df-cld 22953 df-ntr 22954 df-cls 22955 df-nei 23032 df-lm 23163 df-haus 23249 df-cmp 23321 df-fil 23780 df-fm 23872 df-flim 23873 df-flf 23874 df-xms 24256 df-ms 24257 df-cfil 25213 df-cau 25214 df-cmet 25215 df-totbnd 37311 df-bnd 37322 df-rrn 37369 |
This theorem is referenced by: reheibor 37382 |
Copyright terms: Public domain | W3C validator |