![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rrx0el | Structured version Visualization version GIF version |
Description: The zero ("origin") in a generalized real Euclidean space is an element of its base set. (Contributed by AV, 11-Feb-2023.) |
Ref | Expression |
---|---|
rrx0el.0 | ⊢ 0 = (𝐼 × {0}) |
rrx0el.p | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
Ref | Expression |
---|---|
rrx0el | ⊢ (𝐼 ∈ 𝑉 → 0 ∈ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0ex 11232 | . . . . . 6 ⊢ 0 ∈ V | |
2 | 1 | fconst 6777 | . . . . 5 ⊢ (𝐼 × {0}):𝐼⟶{0} |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (𝐼 × {0}):𝐼⟶{0}) |
4 | 0re 11240 | . . . . . 6 ⊢ 0 ∈ ℝ | |
5 | snssg 4783 | . . . . . . 7 ⊢ (0 ∈ ℝ → (0 ∈ ℝ ↔ {0} ⊆ ℝ)) | |
6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ (0 ∈ ℝ ↔ {0} ⊆ ℝ) |
7 | 4, 6 | mpbi 229 | . . . . 5 ⊢ {0} ⊆ ℝ |
8 | 7 | a1i 11 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → {0} ⊆ ℝ) |
9 | 3, 8 | fssd 6734 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (𝐼 × {0}):𝐼⟶ℝ) |
10 | reex 11223 | . . . . 5 ⊢ ℝ ∈ V | |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → ℝ ∈ V) |
12 | id 22 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ 𝑉) | |
13 | 11, 12 | elmapd 8852 | . . 3 ⊢ (𝐼 ∈ 𝑉 → ((𝐼 × {0}) ∈ (ℝ ↑m 𝐼) ↔ (𝐼 × {0}):𝐼⟶ℝ)) |
14 | 9, 13 | mpbird 257 | . 2 ⊢ (𝐼 ∈ 𝑉 → (𝐼 × {0}) ∈ (ℝ ↑m 𝐼)) |
15 | rrx0el.0 | . 2 ⊢ 0 = (𝐼 × {0}) | |
16 | rrx0el.p | . 2 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
17 | 14, 15, 16 | 3eltr4g 2846 | 1 ⊢ (𝐼 ∈ 𝑉 → 0 ∈ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 Vcvv 3470 ⊆ wss 3945 {csn 4624 × cxp 5670 ⟶wf 6538 (class class class)co 7414 ↑m cmap 8838 ℝcr 11131 0cc0 11132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-i2m1 11200 ax-rnegex 11203 ax-cnre 11205 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-sbc 3776 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-map 8840 |
This theorem is referenced by: ehl2eudisval0 47792 2sphere0 47817 |
Copyright terms: Public domain | W3C validator |