![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2sphere0 | Structured version Visualization version GIF version |
Description: The sphere around the origin 0 (see rrx0 25324) with radius 𝑅 in a two dimensional Euclidean space is a circle. (Contributed by AV, 5-Feb-2023.) |
Ref | Expression |
---|---|
2sphere.i | ⊢ 𝐼 = {1, 2} |
2sphere.e | ⊢ 𝐸 = (ℝ^‘𝐼) |
2sphere.p | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
2sphere.s | ⊢ 𝑆 = (Sphere‘𝐸) |
2sphere0.0 | ⊢ 0 = (𝐼 × {0}) |
2sphere0.c | ⊢ 𝐶 = {𝑝 ∈ 𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} |
Ref | Expression |
---|---|
2sphere0 | ⊢ (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sphere.i | . . . . 5 ⊢ 𝐼 = {1, 2} | |
2 | prex 5434 | . . . . 5 ⊢ {1, 2} ∈ V | |
3 | 1, 2 | eqeltri 2825 | . . . 4 ⊢ 𝐼 ∈ V |
4 | 2sphere0.0 | . . . . 5 ⊢ 0 = (𝐼 × {0}) | |
5 | 2sphere.p | . . . . 5 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
6 | 4, 5 | rrx0el 25325 | . . . 4 ⊢ (𝐼 ∈ V → 0 ∈ 𝑃) |
7 | 3, 6 | ax-mp 5 | . . 3 ⊢ 0 ∈ 𝑃 |
8 | 2sphere.e | . . . 4 ⊢ 𝐸 = (ℝ^‘𝐼) | |
9 | 2sphere.s | . . . 4 ⊢ 𝑆 = (Sphere‘𝐸) | |
10 | eqid 2728 | . . . 4 ⊢ {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} = {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} | |
11 | 1, 8, 5, 9, 10 | 2sphere 47822 | . . 3 ⊢ (( 0 ∈ 𝑃 ∧ 𝑅 ∈ (0[,)+∞)) → ( 0 𝑆𝑅) = {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)}) |
12 | 7, 11 | mpan 689 | . 2 ⊢ (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)}) |
13 | 4 | fveq1i 6898 | . . . . . . . . . . . 12 ⊢ ( 0 ‘1) = ((𝐼 × {0})‘1) |
14 | c0ex 11238 | . . . . . . . . . . . . 13 ⊢ 0 ∈ V | |
15 | 1ex 11240 | . . . . . . . . . . . . . . 15 ⊢ 1 ∈ V | |
16 | 15 | prid1 4767 | . . . . . . . . . . . . . 14 ⊢ 1 ∈ {1, 2} |
17 | 16, 1 | eleqtrri 2828 | . . . . . . . . . . . . 13 ⊢ 1 ∈ 𝐼 |
18 | fvconst2g 7214 | . . . . . . . . . . . . 13 ⊢ ((0 ∈ V ∧ 1 ∈ 𝐼) → ((𝐼 × {0})‘1) = 0) | |
19 | 14, 17, 18 | mp2an 691 | . . . . . . . . . . . 12 ⊢ ((𝐼 × {0})‘1) = 0 |
20 | 13, 19 | eqtri 2756 | . . . . . . . . . . 11 ⊢ ( 0 ‘1) = 0 |
21 | 20 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑝 ∈ 𝑃 → ( 0 ‘1) = 0) |
22 | 21 | oveq2d 7436 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘1) − ( 0 ‘1)) = ((𝑝‘1) − 0)) |
23 | 1, 5 | rrx2pxel 47784 | . . . . . . . . . . 11 ⊢ (𝑝 ∈ 𝑃 → (𝑝‘1) ∈ ℝ) |
24 | 23 | recnd 11272 | . . . . . . . . . 10 ⊢ (𝑝 ∈ 𝑃 → (𝑝‘1) ∈ ℂ) |
25 | 24 | subid1d 11590 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘1) − 0) = (𝑝‘1)) |
26 | 22, 25 | eqtrd 2768 | . . . . . . . 8 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘1) − ( 0 ‘1)) = (𝑝‘1)) |
27 | 26 | oveq1d 7435 | . . . . . . 7 ⊢ (𝑝 ∈ 𝑃 → (((𝑝‘1) − ( 0 ‘1))↑2) = ((𝑝‘1)↑2)) |
28 | 4 | fveq1i 6898 | . . . . . . . . . . . 12 ⊢ ( 0 ‘2) = ((𝐼 × {0})‘2) |
29 | 2ex 12319 | . . . . . . . . . . . . . . 15 ⊢ 2 ∈ V | |
30 | 29 | prid2 4768 | . . . . . . . . . . . . . 14 ⊢ 2 ∈ {1, 2} |
31 | 30, 1 | eleqtrri 2828 | . . . . . . . . . . . . 13 ⊢ 2 ∈ 𝐼 |
32 | fvconst2g 7214 | . . . . . . . . . . . . 13 ⊢ ((0 ∈ V ∧ 2 ∈ 𝐼) → ((𝐼 × {0})‘2) = 0) | |
33 | 14, 31, 32 | mp2an 691 | . . . . . . . . . . . 12 ⊢ ((𝐼 × {0})‘2) = 0 |
34 | 28, 33 | eqtri 2756 | . . . . . . . . . . 11 ⊢ ( 0 ‘2) = 0 |
35 | 34 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑝 ∈ 𝑃 → ( 0 ‘2) = 0) |
36 | 35 | oveq2d 7436 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘2) − ( 0 ‘2)) = ((𝑝‘2) − 0)) |
37 | 1, 5 | rrx2pyel 47785 | . . . . . . . . . . 11 ⊢ (𝑝 ∈ 𝑃 → (𝑝‘2) ∈ ℝ) |
38 | 37 | recnd 11272 | . . . . . . . . . 10 ⊢ (𝑝 ∈ 𝑃 → (𝑝‘2) ∈ ℂ) |
39 | 38 | subid1d 11590 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘2) − 0) = (𝑝‘2)) |
40 | 36, 39 | eqtrd 2768 | . . . . . . . 8 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘2) − ( 0 ‘2)) = (𝑝‘2)) |
41 | 40 | oveq1d 7435 | . . . . . . 7 ⊢ (𝑝 ∈ 𝑃 → (((𝑝‘2) − ( 0 ‘2))↑2) = ((𝑝‘2)↑2)) |
42 | 27, 41 | oveq12d 7438 | . . . . . 6 ⊢ (𝑝 ∈ 𝑃 → ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (((𝑝‘1)↑2) + ((𝑝‘2)↑2))) |
43 | 42 | eqeq1d 2730 | . . . . 5 ⊢ (𝑝 ∈ 𝑃 → (((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2) ↔ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2))) |
44 | 43 | adantl 481 | . . . 4 ⊢ ((𝑅 ∈ (0[,)+∞) ∧ 𝑝 ∈ 𝑃) → (((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2) ↔ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2))) |
45 | 44 | rabbidva 3436 | . . 3 ⊢ (𝑅 ∈ (0[,)+∞) → {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} = {𝑝 ∈ 𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}) |
46 | 2sphere0.c | . . 3 ⊢ 𝐶 = {𝑝 ∈ 𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} | |
47 | 45, 46 | eqtr4di 2786 | . 2 ⊢ (𝑅 ∈ (0[,)+∞) → {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} = 𝐶) |
48 | 12, 47 | eqtrd 2768 | 1 ⊢ (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 {crab 3429 Vcvv 3471 {csn 4629 {cpr 4631 × cxp 5676 ‘cfv 6548 (class class class)co 7420 ↑m cmap 8844 ℝcr 11137 0cc0 11138 1c1 11139 + caddc 11141 +∞cpnf 11275 − cmin 11474 2c2 12297 [,)cico 13358 ↑cexp 14058 ℝ^crrx 25310 Spherecsph 47801 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-inf2 9664 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 ax-addf 11217 ax-mulf 11218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-of 7685 df-om 7871 df-1st 7993 df-2nd 7994 df-supp 8166 df-tpos 8231 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-er 8724 df-map 8846 df-ixp 8916 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-fsupp 9386 df-sup 9465 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-rp 13007 df-xneg 13124 df-xadd 13125 df-xmul 13126 df-ico 13362 df-icc 13363 df-fz 13517 df-fzo 13660 df-seq 13999 df-exp 14059 df-hash 14322 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-clim 15464 df-sum 15665 df-struct 17115 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-mulr 17246 df-starv 17247 df-sca 17248 df-vsca 17249 df-ip 17250 df-tset 17251 df-ple 17252 df-ds 17254 df-unif 17255 df-hom 17256 df-cco 17257 df-0g 17422 df-gsum 17423 df-prds 17428 df-pws 17430 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-mhm 18739 df-grp 18892 df-minusg 18893 df-sbg 18894 df-subg 19077 df-ghm 19167 df-cntz 19267 df-cmn 19736 df-abl 19737 df-mgp 20074 df-rng 20092 df-ur 20121 df-ring 20174 df-cring 20175 df-oppr 20272 df-dvdsr 20295 df-unit 20296 df-invr 20326 df-dvr 20339 df-rhm 20410 df-subrng 20482 df-subrg 20507 df-drng 20625 df-field 20626 df-staf 20724 df-srng 20725 df-lmod 20744 df-lss 20815 df-sra 21057 df-rgmod 21058 df-xmet 21271 df-met 21272 df-cnfld 21279 df-refld 21536 df-dsmm 21665 df-frlm 21680 df-nm 24490 df-tng 24492 df-tcph 25096 df-rrx 25312 df-ehl 25313 df-sph 47803 |
This theorem is referenced by: itsclc0 47844 itsclc0b 47845 itscnhlinecirc02p 47858 |
Copyright terms: Public domain | W3C validator |