Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsvf0 Structured version   Visualization version   GIF version

Theorem signsvf0 34245
Description: There is no change of sign in the empty word. (Contributed by Thierry Arnoux, 8-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signsvf0 (𝑉‘∅) = 0
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝑊   𝑓,𝑗   𝑇,𝑓
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑖,𝑗,𝑛,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signsvf0
StepHypRef Expression
1 wrd0 14529 . . 3 ∅ ∈ Word ℝ
2 signsv.p . . . 4 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
3 signsv.w . . . 4 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
4 signsv.t . . . 4 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
5 signsv.v . . . 4 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
62, 3, 4, 5signsvvfval 34243 . . 3 (∅ ∈ Word ℝ → (𝑉‘∅) = Σ𝑗 ∈ (1..^(♯‘∅))if(((𝑇‘∅)‘𝑗) ≠ ((𝑇‘∅)‘(𝑗 − 1)), 1, 0))
71, 6ax-mp 5 . 2 (𝑉‘∅) = Σ𝑗 ∈ (1..^(♯‘∅))if(((𝑇‘∅)‘𝑗) ≠ ((𝑇‘∅)‘(𝑗 − 1)), 1, 0)
8 hash0 14366 . . . . 5 (♯‘∅) = 0
98oveq2i 7437 . . . 4 (1..^(♯‘∅)) = (1..^0)
10 0le1 11775 . . . . 5 0 ≤ 1
11 1z 12630 . . . . . 6 1 ∈ ℤ
12 0z 12607 . . . . . 6 0 ∈ ℤ
13 fzon 13693 . . . . . 6 ((1 ∈ ℤ ∧ 0 ∈ ℤ) → (0 ≤ 1 ↔ (1..^0) = ∅))
1411, 12, 13mp2an 690 . . . . 5 (0 ≤ 1 ↔ (1..^0) = ∅)
1510, 14mpbi 229 . . . 4 (1..^0) = ∅
169, 15eqtri 2756 . . 3 (1..^(♯‘∅)) = ∅
1716sumeq1i 15684 . 2 Σ𝑗 ∈ (1..^(♯‘∅))if(((𝑇‘∅)‘𝑗) ≠ ((𝑇‘∅)‘(𝑗 − 1)), 1, 0) = Σ𝑗 ∈ ∅ if(((𝑇‘∅)‘𝑗) ≠ ((𝑇‘∅)‘(𝑗 − 1)), 1, 0)
18 sum0 15707 . 2 Σ𝑗 ∈ ∅ if(((𝑇‘∅)‘𝑗) ≠ ((𝑇‘∅)‘(𝑗 − 1)), 1, 0) = 0
197, 17, 183eqtri 2760 1 (𝑉‘∅) = 0
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1533  wcel 2098  wne 2937  c0 4326  ifcif 4532  {cpr 4634  {ctp 4636  cop 4638   class class class wbr 5152  cmpt 5235  cfv 6553  (class class class)co 7426  cmpo 7428  cr 11145  0cc0 11146  1c1 11147  cle 11287  cmin 11482  -cneg 11483  cz 12596  ...cfz 13524  ..^cfzo 13667  chash 14329  Word cword 14504  sgncsgn 15073  Σcsu 15672  ndxcnx 17169  Basecbs 17187  +gcplusg 17240   Σg cgsu 17429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9672  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-sup 9473  df-oi 9541  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-n0 12511  df-z 12597  df-uz 12861  df-rp 13015  df-fz 13525  df-fzo 13668  df-seq 14007  df-exp 14067  df-hash 14330  df-word 14505  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-clim 15472  df-sum 15673
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »