![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > signsvvfval | Structured version Visualization version GIF version |
Description: The value of 𝑉, which represents the number of times the sign changes in a word. (Contributed by Thierry Arnoux, 7-Oct-2018.) |
Ref | Expression |
---|---|
signsv.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
signsv.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
signsv.t | ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
signsv.v | ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
Ref | Expression |
---|---|
signsvvfval | ⊢ (𝐹 ∈ Word ℝ → (𝑉‘𝐹) = Σ𝑗 ∈ (1..^(♯‘𝐹))if(((𝑇‘𝐹)‘𝑗) ≠ ((𝑇‘𝐹)‘(𝑗 − 1)), 1, 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6900 | . . . 4 ⊢ (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹)) | |
2 | 1 | oveq2d 7440 | . . 3 ⊢ (𝑓 = 𝐹 → (1..^(♯‘𝑓)) = (1..^(♯‘𝐹))) |
3 | fveq2 6900 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑇‘𝑓) = (𝑇‘𝐹)) | |
4 | 3 | fveq1d 6902 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑇‘𝑓)‘𝑗) = ((𝑇‘𝐹)‘𝑗)) |
5 | 3 | fveq1d 6902 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑇‘𝑓)‘(𝑗 − 1)) = ((𝑇‘𝐹)‘(𝑗 − 1))) |
6 | 4, 5 | neeq12d 2998 | . . . . 5 ⊢ (𝑓 = 𝐹 → (((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)) ↔ ((𝑇‘𝐹)‘𝑗) ≠ ((𝑇‘𝐹)‘(𝑗 − 1)))) |
7 | 6 | ifbid 4553 | . . . 4 ⊢ (𝑓 = 𝐹 → if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0) = if(((𝑇‘𝐹)‘𝑗) ≠ ((𝑇‘𝐹)‘(𝑗 − 1)), 1, 0)) |
8 | 7 | adantr 479 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑗 ∈ (1..^(♯‘𝑓))) → if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0) = if(((𝑇‘𝐹)‘𝑗) ≠ ((𝑇‘𝐹)‘(𝑗 − 1)), 1, 0)) |
9 | 2, 8 | sumeq12dv 15690 | . 2 ⊢ (𝑓 = 𝐹 → Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0) = Σ𝑗 ∈ (1..^(♯‘𝐹))if(((𝑇‘𝐹)‘𝑗) ≠ ((𝑇‘𝐹)‘(𝑗 − 1)), 1, 0)) |
10 | signsv.v | . 2 ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) | |
11 | sumex 15672 | . 2 ⊢ Σ𝑗 ∈ (1..^(♯‘𝐹))if(((𝑇‘𝐹)‘𝑗) ≠ ((𝑇‘𝐹)‘(𝑗 − 1)), 1, 0) ∈ V | |
12 | 9, 10, 11 | fvmpt 7008 | 1 ⊢ (𝐹 ∈ Word ℝ → (𝑉‘𝐹) = Σ𝑗 ∈ (1..^(♯‘𝐹))if(((𝑇‘𝐹)‘𝑗) ≠ ((𝑇‘𝐹)‘(𝑗 − 1)), 1, 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ≠ wne 2936 ifcif 4530 {cpr 4632 {ctp 4634 〈cop 4636 ↦ cmpt 5233 ‘cfv 6551 (class class class)co 7424 ∈ cmpo 7426 ℝcr 11143 0cc0 11144 1c1 11145 − cmin 11480 -cneg 11481 ...cfz 13522 ..^cfzo 13665 ♯chash 14327 Word cword 14502 sgncsgn 15071 Σcsu 15670 ndxcnx 17167 Basecbs 17185 +gcplusg 17238 Σg cgsu 17427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-er 8729 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-nn 12249 df-n0 12509 df-z 12595 df-uz 12859 df-fz 13523 df-seq 14005 df-sum 15671 |
This theorem is referenced by: signsvf0 34217 signsvf1 34218 signsvfn 34219 |
Copyright terms: Public domain | W3C validator |