![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subsubd | Structured version Visualization version GIF version |
Description: Law for double subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
subaddd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
subsubd | ⊢ (𝜑 → (𝐴 − (𝐵 − 𝐶)) = ((𝐴 − 𝐵) + 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | subaddd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | subsub 11514 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵 − 𝐶)) = ((𝐴 − 𝐵) + 𝐶)) | |
5 | 1, 2, 3, 4 | syl3anc 1369 | 1 ⊢ (𝜑 → (𝐴 − (𝐵 − 𝐶)) = ((𝐴 − 𝐵) + 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 (class class class)co 7414 ℂcc 11130 + caddc 11135 − cmin 11468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-ltxr 11277 df-sub 11470 |
This theorem is referenced by: subaddmulsub 11701 uzsubsubfz 13549 bcm1k 14300 swrds2m 14918 crre 15087 imval2 15124 cvgcmp 15788 arisum2 15833 mertenslem1 15856 binomfallfaclem2 16010 fallfacval4 16013 bpolydiflem 16024 bpoly3 16028 bpoly4 16029 cos01bnd 16156 prmdiv 16747 vfermltlALT 16764 dvle 25933 dvfsumlem2 25954 dvfsumlem2OLD 25955 efif1olem2 26470 affineequiv 26748 heron 26763 dquart 26778 quartlem1 26782 acosneg 26812 efiatan2 26842 atans2 26856 birthdaylem2 26877 lgamcvg2 26980 wilthlem2 26994 basellem5 27010 gausslemma2dlem1a 27291 pntrlog2bndlem4 27506 pntrlog2bndlem5 27507 pntrlog2bndlem6 27509 colinearalglem2 28711 axsegconlem9 28729 clwlkclwwlklem2a1 29795 clwlkclwwlklem2a4 29800 clwwlkext2edg 29859 numclwwlk1lem2foalem 30154 numclwwlk1lem2fo 30161 wrdt2ind 32668 subfacp1lem5 34788 poimirlem29 37116 itg2addnclem 37138 itg2addnclem3 37140 bcle2d 41645 rmspecsqrtnq 42320 sub31 44666 infleinflem2 44747 stoweidlem26 45408 fourierdlem19 45508 fourierdlem63 45551 fourierdlem107 45595 ovolval5lem1 46034 fmtnorec4 46883 itcovalt2lem2lem2 47741 |
Copyright terms: Public domain | W3C validator |