![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tanhbnd | Structured version Visualization version GIF version |
Description: The hyperbolic tangent of a real number is bounded by 1. (Contributed by Mario Carneiro, 4-Apr-2015.) |
Ref | Expression |
---|---|
tanhbnd | ⊢ (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) ∈ (-1(,)1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | retanhcl 16135 | . 2 ⊢ (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) ∈ ℝ) | |
2 | ax-icn 11197 | . . . . . . . 8 ⊢ i ∈ ℂ | |
3 | recn 11228 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
4 | mulcl 11222 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
5 | 2, 3, 4 | sylancr 586 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ) |
6 | rpcoshcl 16133 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℝ+) | |
7 | 6 | rpne0d 13053 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ≠ 0) |
8 | 5, 7 | tancld 16108 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (tan‘(i · 𝐴)) ∈ ℂ) |
9 | 2 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → i ∈ ℂ) |
10 | ine0 11679 | . . . . . . 7 ⊢ i ≠ 0 | |
11 | 10 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → i ≠ 0) |
12 | 8, 9, 11 | divnegd 12033 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -((tan‘(i · 𝐴)) / i) = (-(tan‘(i · 𝐴)) / i)) |
13 | mulneg2 11681 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴)) | |
14 | 2, 3, 13 | sylancr 586 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (i · -𝐴) = -(i · 𝐴)) |
15 | 14 | fveq2d 6901 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (tan‘(i · -𝐴)) = (tan‘-(i · 𝐴))) |
16 | tanneg 16124 | . . . . . . . 8 ⊢ (((i · 𝐴) ∈ ℂ ∧ (cos‘(i · 𝐴)) ≠ 0) → (tan‘-(i · 𝐴)) = -(tan‘(i · 𝐴))) | |
17 | 5, 7, 16 | syl2anc 583 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (tan‘-(i · 𝐴)) = -(tan‘(i · 𝐴))) |
18 | 15, 17 | eqtrd 2768 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (tan‘(i · -𝐴)) = -(tan‘(i · 𝐴))) |
19 | 18 | oveq1d 7435 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((tan‘(i · -𝐴)) / i) = (-(tan‘(i · 𝐴)) / i)) |
20 | 12, 19 | eqtr4d 2771 | . . . 4 ⊢ (𝐴 ∈ ℝ → -((tan‘(i · 𝐴)) / i) = ((tan‘(i · -𝐴)) / i)) |
21 | renegcl 11553 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
22 | tanhlt1 16136 | . . . . 5 ⊢ (-𝐴 ∈ ℝ → ((tan‘(i · -𝐴)) / i) < 1) | |
23 | 21, 22 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((tan‘(i · -𝐴)) / i) < 1) |
24 | 20, 23 | eqbrtrd 5170 | . . 3 ⊢ (𝐴 ∈ ℝ → -((tan‘(i · 𝐴)) / i) < 1) |
25 | 1re 11244 | . . . 4 ⊢ 1 ∈ ℝ | |
26 | ltnegcon1 11745 | . . . 4 ⊢ ((((tan‘(i · 𝐴)) / i) ∈ ℝ ∧ 1 ∈ ℝ) → (-((tan‘(i · 𝐴)) / i) < 1 ↔ -1 < ((tan‘(i · 𝐴)) / i))) | |
27 | 1, 25, 26 | sylancl 585 | . . 3 ⊢ (𝐴 ∈ ℝ → (-((tan‘(i · 𝐴)) / i) < 1 ↔ -1 < ((tan‘(i · 𝐴)) / i))) |
28 | 24, 27 | mpbid 231 | . 2 ⊢ (𝐴 ∈ ℝ → -1 < ((tan‘(i · 𝐴)) / i)) |
29 | tanhlt1 16136 | . 2 ⊢ (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) < 1) | |
30 | neg1rr 12357 | . . . 4 ⊢ -1 ∈ ℝ | |
31 | 30 | rexri 11302 | . . 3 ⊢ -1 ∈ ℝ* |
32 | 25 | rexri 11302 | . . 3 ⊢ 1 ∈ ℝ* |
33 | elioo2 13397 | . . 3 ⊢ ((-1 ∈ ℝ* ∧ 1 ∈ ℝ*) → (((tan‘(i · 𝐴)) / i) ∈ (-1(,)1) ↔ (((tan‘(i · 𝐴)) / i) ∈ ℝ ∧ -1 < ((tan‘(i · 𝐴)) / i) ∧ ((tan‘(i · 𝐴)) / i) < 1))) | |
34 | 31, 32, 33 | mp2an 691 | . 2 ⊢ (((tan‘(i · 𝐴)) / i) ∈ (-1(,)1) ↔ (((tan‘(i · 𝐴)) / i) ∈ ℝ ∧ -1 < ((tan‘(i · 𝐴)) / i) ∧ ((tan‘(i · 𝐴)) / i) < 1)) |
35 | 1, 28, 29, 34 | syl3anbrc 1341 | 1 ⊢ (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) ∈ (-1(,)1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2937 class class class wbr 5148 ‘cfv 6548 (class class class)co 7420 ℂcc 11136 ℝcr 11137 0cc0 11138 1c1 11139 ici 11140 · cmul 11143 ℝ*cxr 11277 < clt 11278 -cneg 11475 / cdiv 11901 (,)cioo 13356 cosccos 16040 tanctan 16041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-inf2 9664 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-er 8724 df-pm 8847 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-sup 9465 df-inf 9466 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-n0 12503 df-z 12589 df-uz 12853 df-rp 13007 df-ioo 13360 df-ico 13362 df-fz 13517 df-fzo 13660 df-fl 13789 df-seq 13999 df-exp 14059 df-fac 14265 df-bc 14294 df-hash 14322 df-shft 15046 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-limsup 15447 df-clim 15464 df-rlim 15465 df-sum 15665 df-ef 16043 df-sin 16045 df-cos 16046 df-tan 16047 |
This theorem is referenced by: tanregt0 26472 atantan 26854 |
Copyright terms: Public domain | W3C validator |