![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > thlbasOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of thlbas 21628 as of 11-Nov-2024. Base set of the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
thlval.k | ⊢ 𝐾 = (toHL‘𝑊) |
thlbas.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
Ref | Expression |
---|---|
thlbasOLD | ⊢ 𝐶 = (Base‘𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thlbas.c | . . . . . 6 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
2 | 1 | fvexi 6911 | . . . . 5 ⊢ 𝐶 ∈ V |
3 | eqid 2728 | . . . . . 6 ⊢ (toInc‘𝐶) = (toInc‘𝐶) | |
4 | 3 | ipobas 18523 | . . . . 5 ⊢ (𝐶 ∈ V → 𝐶 = (Base‘(toInc‘𝐶))) |
5 | 2, 4 | ax-mp 5 | . . . 4 ⊢ 𝐶 = (Base‘(toInc‘𝐶)) |
6 | baseid 17183 | . . . . 5 ⊢ Base = Slot (Base‘ndx) | |
7 | 1re 11245 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
8 | 1nn 12254 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
9 | 1nn0 12519 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
10 | 1lt10 12847 | . . . . . . . 8 ⊢ 1 < ;10 | |
11 | 8, 9, 9, 10 | declti 12746 | . . . . . . 7 ⊢ 1 < ;11 |
12 | 7, 11 | ltneii 11358 | . . . . . 6 ⊢ 1 ≠ ;11 |
13 | basendx 17189 | . . . . . . 7 ⊢ (Base‘ndx) = 1 | |
14 | ocndx 17362 | . . . . . . 7 ⊢ (oc‘ndx) = ;11 | |
15 | 13, 14 | neeq12i 3004 | . . . . . 6 ⊢ ((Base‘ndx) ≠ (oc‘ndx) ↔ 1 ≠ ;11) |
16 | 12, 15 | mpbir 230 | . . . . 5 ⊢ (Base‘ndx) ≠ (oc‘ndx) |
17 | 6, 16 | setsnid 17178 | . . . 4 ⊢ (Base‘(toInc‘𝐶)) = (Base‘((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
18 | 5, 17 | eqtri 2756 | . . 3 ⊢ 𝐶 = (Base‘((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
19 | thlval.k | . . . . 5 ⊢ 𝐾 = (toHL‘𝑊) | |
20 | eqid 2728 | . . . . 5 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
21 | 19, 1, 3, 20 | thlval 21627 | . . . 4 ⊢ (𝑊 ∈ V → 𝐾 = ((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
22 | 21 | fveq2d 6901 | . . 3 ⊢ (𝑊 ∈ V → (Base‘𝐾) = (Base‘((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉))) |
23 | 18, 22 | eqtr4id 2787 | . 2 ⊢ (𝑊 ∈ V → 𝐶 = (Base‘𝐾)) |
24 | base0 17185 | . . 3 ⊢ ∅ = (Base‘∅) | |
25 | fvprc 6889 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (ClSubSp‘𝑊) = ∅) | |
26 | 1, 25 | eqtrid 2780 | . . 3 ⊢ (¬ 𝑊 ∈ V → 𝐶 = ∅) |
27 | fvprc 6889 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (toHL‘𝑊) = ∅) | |
28 | 19, 27 | eqtrid 2780 | . . . 4 ⊢ (¬ 𝑊 ∈ V → 𝐾 = ∅) |
29 | 28 | fveq2d 6901 | . . 3 ⊢ (¬ 𝑊 ∈ V → (Base‘𝐾) = (Base‘∅)) |
30 | 24, 26, 29 | 3eqtr4a 2794 | . 2 ⊢ (¬ 𝑊 ∈ V → 𝐶 = (Base‘𝐾)) |
31 | 23, 30 | pm2.61i 182 | 1 ⊢ 𝐶 = (Base‘𝐾) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1534 ∈ wcel 2099 ≠ wne 2937 Vcvv 3471 ∅c0 4323 〈cop 4635 ‘cfv 6548 (class class class)co 7420 1c1 11140 ;cdc 12708 sSet csts 17132 ndxcnx 17162 Basecbs 17180 occoc 17241 toInccipo 18519 ocvcocv 21592 ClSubSpccss 21593 toHLcthl 21594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 df-9 12313 df-n0 12504 df-z 12590 df-dec 12709 df-uz 12854 df-fz 13518 df-struct 17116 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-tset 17252 df-ple 17253 df-ocomp 17254 df-ipo 18520 df-thl 21597 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |