MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmdgsum2 Structured version   Visualization version   GIF version

Theorem tmdgsum2 23993
Description: For any neighborhood 𝑈 of 𝑛𝑋, there is a neighborhood 𝑢 of 𝑋 such that any sum of 𝑛 elements in 𝑢 sums to an element of 𝑈. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypotheses
Ref Expression
tmdgsum.j 𝐽 = (TopOpen‘𝐺)
tmdgsum.b 𝐵 = (Base‘𝐺)
tmdgsum2.t · = (.g𝐺)
tmdgsum2.1 (𝜑𝐺 ∈ CMnd)
tmdgsum2.2 (𝜑𝐺 ∈ TopMnd)
tmdgsum2.a (𝜑𝐴 ∈ Fin)
tmdgsum2.u (𝜑𝑈𝐽)
tmdgsum2.x (𝜑𝑋𝐵)
tmdgsum2.3 (𝜑 → ((♯‘𝐴) · 𝑋) ∈ 𝑈)
Assertion
Ref Expression
tmdgsum2 (𝜑 → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))
Distinct variable groups:   𝑢,𝑓,𝐴   𝑓,𝐽,𝑢   𝑓,𝑋,𝑢   𝐵,𝑓,𝑢   𝑓,𝐺,𝑢   𝑈,𝑓,𝑢
Allowed substitution hints:   𝜑(𝑢,𝑓)   · (𝑢,𝑓)

Proof of Theorem tmdgsum2
Dummy variables 𝑔 𝑘 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2728 . . . . . . 7 (𝑓 ∈ (𝐵m 𝐴) ↦ (𝐺 Σg 𝑓)) = (𝑓 ∈ (𝐵m 𝐴) ↦ (𝐺 Σg 𝑓))
21mptpreima 6236 . . . . . 6 ((𝑓 ∈ (𝐵m 𝐴) ↦ (𝐺 Σg 𝑓)) “ 𝑈) = {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}
3 tmdgsum2.1 . . . . . . . 8 (𝜑𝐺 ∈ CMnd)
4 tmdgsum2.2 . . . . . . . 8 (𝜑𝐺 ∈ TopMnd)
5 tmdgsum2.a . . . . . . . 8 (𝜑𝐴 ∈ Fin)
6 tmdgsum.j . . . . . . . . 9 𝐽 = (TopOpen‘𝐺)
7 tmdgsum.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
86, 7tmdgsum 23992 . . . . . . . 8 ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin) → (𝑓 ∈ (𝐵m 𝐴) ↦ (𝐺 Σg 𝑓)) ∈ ((𝐽ko 𝒫 𝐴) Cn 𝐽))
93, 4, 5, 8syl3anc 1369 . . . . . . 7 (𝜑 → (𝑓 ∈ (𝐵m 𝐴) ↦ (𝐺 Σg 𝑓)) ∈ ((𝐽ko 𝒫 𝐴) Cn 𝐽))
10 tmdgsum2.u . . . . . . 7 (𝜑𝑈𝐽)
11 cnima 23162 . . . . . . 7 (((𝑓 ∈ (𝐵m 𝐴) ↦ (𝐺 Σg 𝑓)) ∈ ((𝐽ko 𝒫 𝐴) Cn 𝐽) ∧ 𝑈𝐽) → ((𝑓 ∈ (𝐵m 𝐴) ↦ (𝐺 Σg 𝑓)) “ 𝑈) ∈ (𝐽ko 𝒫 𝐴))
129, 10, 11syl2anc 583 . . . . . 6 (𝜑 → ((𝑓 ∈ (𝐵m 𝐴) ↦ (𝐺 Σg 𝑓)) “ 𝑈) ∈ (𝐽ko 𝒫 𝐴))
132, 12eqeltrrid 2834 . . . . 5 (𝜑 → {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ∈ (𝐽ko 𝒫 𝐴))
146, 7tmdtopon 23978 . . . . . . . 8 (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝐵))
15 topontop 22808 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top)
164, 14, 153syl 18 . . . . . . 7 (𝜑𝐽 ∈ Top)
17 xkopt 23552 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin) → (𝐽ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝐽})))
1816, 5, 17syl2anc 583 . . . . . 6 (𝜑 → (𝐽ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝐽})))
19 fnconstg 6779 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝐵) → (𝐴 × {𝐽}) Fn 𝐴)
204, 14, 193syl 18 . . . . . . 7 (𝜑 → (𝐴 × {𝐽}) Fn 𝐴)
21 eqid 2728 . . . . . . . 8 {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
2221ptval 23467 . . . . . . 7 ((𝐴 ∈ Fin ∧ (𝐴 × {𝐽}) Fn 𝐴) → (∏t‘(𝐴 × {𝐽})) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
235, 20, 22syl2anc 583 . . . . . 6 (𝜑 → (∏t‘(𝐴 × {𝐽})) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
2418, 23eqtrd 2768 . . . . 5 (𝜑 → (𝐽ko 𝒫 𝐴) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
2513, 24eleqtrd 2831 . . . 4 (𝜑 → {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ∈ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
26 oveq2 7422 . . . . . 6 (𝑓 = (𝐴 × {𝑋}) → (𝐺 Σg 𝑓) = (𝐺 Σg (𝐴 × {𝑋})))
2726eleq1d 2814 . . . . 5 (𝑓 = (𝐴 × {𝑋}) → ((𝐺 Σg 𝑓) ∈ 𝑈 ↔ (𝐺 Σg (𝐴 × {𝑋})) ∈ 𝑈))
28 tmdgsum2.x . . . . . . 7 (𝜑𝑋𝐵)
29 fconst6g 6780 . . . . . . 7 (𝑋𝐵 → (𝐴 × {𝑋}):𝐴𝐵)
3028, 29syl 17 . . . . . 6 (𝜑 → (𝐴 × {𝑋}):𝐴𝐵)
317fvexi 6905 . . . . . . 7 𝐵 ∈ V
32 elmapg 8851 . . . . . . 7 ((𝐵 ∈ V ∧ 𝐴 ∈ Fin) → ((𝐴 × {𝑋}) ∈ (𝐵m 𝐴) ↔ (𝐴 × {𝑋}):𝐴𝐵))
3331, 5, 32sylancr 586 . . . . . 6 (𝜑 → ((𝐴 × {𝑋}) ∈ (𝐵m 𝐴) ↔ (𝐴 × {𝑋}):𝐴𝐵))
3430, 33mpbird 257 . . . . 5 (𝜑 → (𝐴 × {𝑋}) ∈ (𝐵m 𝐴))
35 fconstmpt 5734 . . . . . . . 8 (𝐴 × {𝑋}) = (𝑘𝐴𝑋)
3635oveq2i 7425 . . . . . . 7 (𝐺 Σg (𝐴 × {𝑋})) = (𝐺 Σg (𝑘𝐴𝑋))
37 cmnmnd 19745 . . . . . . . . 9 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
383, 37syl 17 . . . . . . . 8 (𝜑𝐺 ∈ Mnd)
39 tmdgsum2.t . . . . . . . . 9 · = (.g𝐺)
407, 39gsumconst 19882 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) → (𝐺 Σg (𝑘𝐴𝑋)) = ((♯‘𝐴) · 𝑋))
4138, 5, 28, 40syl3anc 1369 . . . . . . 7 (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) = ((♯‘𝐴) · 𝑋))
4236, 41eqtrid 2780 . . . . . 6 (𝜑 → (𝐺 Σg (𝐴 × {𝑋})) = ((♯‘𝐴) · 𝑋))
43 tmdgsum2.3 . . . . . 6 (𝜑 → ((♯‘𝐴) · 𝑋) ∈ 𝑈)
4442, 43eqeltrd 2829 . . . . 5 (𝜑 → (𝐺 Σg (𝐴 × {𝑋})) ∈ 𝑈)
4527, 34, 44elrabd 3683 . . . 4 (𝜑 → (𝐴 × {𝑋}) ∈ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})
46 tg2 22861 . . . 4 (({𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ∈ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}) ∧ (𝐴 × {𝑋}) ∈ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑡 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} ((𝐴 × {𝑋}) ∈ 𝑡𝑡 ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}))
4725, 45, 46syl2anc 583 . . 3 (𝜑 → ∃𝑡 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} ((𝐴 × {𝑋}) ∈ 𝑡𝑡 ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}))
48 eleq2 2818 . . . . 5 (𝑡 = 𝑥 → ((𝐴 × {𝑋}) ∈ 𝑡 ↔ (𝐴 × {𝑋}) ∈ 𝑥))
49 sseq1 4003 . . . . 5 (𝑡 = 𝑥 → (𝑡 ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ↔ 𝑥 ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}))
5048, 49anbi12d 631 . . . 4 (𝑡 = 𝑥 → (((𝐴 × {𝑋}) ∈ 𝑡𝑡 ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) ↔ ((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})))
5150rexab2 3693 . . 3 (∃𝑡 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} ((𝐴 × {𝑋}) ∈ 𝑡𝑡 ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) ↔ ∃𝑥(∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) ∧ ((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})))
5247, 51sylib 217 . 2 (𝜑 → ∃𝑥(∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) ∧ ((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})))
53 toponuni 22809 . . . . . . . . . . . . . 14 (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = 𝐽)
544, 14, 533syl 18 . . . . . . . . . . . . 13 (𝜑𝐵 = 𝐽)
5554ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝐵 = 𝐽)
5655ineq1d 4207 . . . . . . . . . . 11 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (𝐵 ran 𝑔) = ( 𝐽 ran 𝑔))
5716ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝐽 ∈ Top)
58 simplrl 776 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝑔 Fn 𝐴)
59 simplrr 777 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))
60 fvconst2g 7208 . . . . . . . . . . . . . . . . . 18 ((𝐽 ∈ Top ∧ 𝑦𝐴) → ((𝐴 × {𝐽})‘𝑦) = 𝐽)
6160eleq2d 2815 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑦𝐴) → ((𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ↔ (𝑔𝑦) ∈ 𝐽))
6261ralbidva 3171 . . . . . . . . . . . . . . . 16 (𝐽 ∈ Top → (∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ↔ ∀𝑦𝐴 (𝑔𝑦) ∈ 𝐽))
6357, 62syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ↔ ∀𝑦𝐴 (𝑔𝑦) ∈ 𝐽))
6459, 63mpbid 231 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑦𝐴 (𝑔𝑦) ∈ 𝐽)
65 ffnfv 7123 . . . . . . . . . . . . . 14 (𝑔:𝐴𝐽 ↔ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ 𝐽))
6658, 64, 65sylanbrc 582 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝑔:𝐴𝐽)
6766frnd 6724 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ran 𝑔𝐽)
685ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝐴 ∈ Fin)
69 dffn4 6811 . . . . . . . . . . . . . 14 (𝑔 Fn 𝐴𝑔:𝐴onto→ran 𝑔)
7058, 69sylib 217 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝑔:𝐴onto→ran 𝑔)
71 fofi 9356 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑔:𝐴onto→ran 𝑔) → ran 𝑔 ∈ Fin)
7268, 70, 71syl2anc 583 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ran 𝑔 ∈ Fin)
73 eqid 2728 . . . . . . . . . . . . 13 𝐽 = 𝐽
7473rintopn 22804 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ ran 𝑔𝐽 ∧ ran 𝑔 ∈ Fin) → ( 𝐽 ran 𝑔) ∈ 𝐽)
7557, 67, 72, 74syl3anc 1369 . . . . . . . . . . 11 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ( 𝐽 ran 𝑔) ∈ 𝐽)
7656, 75eqeltrd 2829 . . . . . . . . . 10 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (𝐵 ran 𝑔) ∈ 𝐽)
7728ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝑋𝐵)
78 fconstmpt 5734 . . . . . . . . . . . . . 14 (𝐴 × {𝑋}) = (𝑦𝐴𝑋)
79 simprl 770 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦))
8078, 79eqeltrrid 2834 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (𝑦𝐴𝑋) ∈ X𝑦𝐴 (𝑔𝑦))
81 mptelixpg 8947 . . . . . . . . . . . . . 14 (𝐴 ∈ Fin → ((𝑦𝐴𝑋) ∈ X𝑦𝐴 (𝑔𝑦) ↔ ∀𝑦𝐴 𝑋 ∈ (𝑔𝑦)))
8268, 81syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ((𝑦𝐴𝑋) ∈ X𝑦𝐴 (𝑔𝑦) ↔ ∀𝑦𝐴 𝑋 ∈ (𝑔𝑦)))
8380, 82mpbid 231 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑦𝐴 𝑋 ∈ (𝑔𝑦))
84 eleq2 2818 . . . . . . . . . . . . . 14 (𝑧 = (𝑔𝑦) → (𝑋𝑧𝑋 ∈ (𝑔𝑦)))
8584ralrn 7092 . . . . . . . . . . . . 13 (𝑔 Fn 𝐴 → (∀𝑧 ∈ ran 𝑔 𝑋𝑧 ↔ ∀𝑦𝐴 𝑋 ∈ (𝑔𝑦)))
8658, 85syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (∀𝑧 ∈ ran 𝑔 𝑋𝑧 ↔ ∀𝑦𝐴 𝑋 ∈ (𝑔𝑦)))
8783, 86mpbird 257 . . . . . . . . . . 11 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑧 ∈ ran 𝑔 𝑋𝑧)
88 elrint 4989 . . . . . . . . . . 11 (𝑋 ∈ (𝐵 ran 𝑔) ↔ (𝑋𝐵 ∧ ∀𝑧 ∈ ran 𝑔 𝑋𝑧))
8977, 87, 88sylanbrc 582 . . . . . . . . . 10 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝑋 ∈ (𝐵 ran 𝑔))
9031inex1 5311 . . . . . . . . . . . . 13 (𝐵 ran 𝑔) ∈ V
91 ixpconstg 8918 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ (𝐵 ran 𝑔) ∈ V) → X𝑦𝐴 (𝐵 ran 𝑔) = ((𝐵 ran 𝑔) ↑m 𝐴))
9268, 90, 91sylancl 585 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → X𝑦𝐴 (𝐵 ran 𝑔) = ((𝐵 ran 𝑔) ↑m 𝐴))
93 inss2 4225 . . . . . . . . . . . . . . 15 (𝐵 ran 𝑔) ⊆ ran 𝑔
94 fnfvelrn 7084 . . . . . . . . . . . . . . . 16 ((𝑔 Fn 𝐴𝑦𝐴) → (𝑔𝑦) ∈ ran 𝑔)
95 intss1 4961 . . . . . . . . . . . . . . . 16 ((𝑔𝑦) ∈ ran 𝑔 ran 𝑔 ⊆ (𝑔𝑦))
9694, 95syl 17 . . . . . . . . . . . . . . 15 ((𝑔 Fn 𝐴𝑦𝐴) → ran 𝑔 ⊆ (𝑔𝑦))
9793, 96sstrid 3989 . . . . . . . . . . . . . 14 ((𝑔 Fn 𝐴𝑦𝐴) → (𝐵 ran 𝑔) ⊆ (𝑔𝑦))
9897ralrimiva 3142 . . . . . . . . . . . . 13 (𝑔 Fn 𝐴 → ∀𝑦𝐴 (𝐵 ran 𝑔) ⊆ (𝑔𝑦))
99 ss2ixp 8922 . . . . . . . . . . . . 13 (∀𝑦𝐴 (𝐵 ran 𝑔) ⊆ (𝑔𝑦) → X𝑦𝐴 (𝐵 ran 𝑔) ⊆ X𝑦𝐴 (𝑔𝑦))
10058, 98, 993syl 18 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → X𝑦𝐴 (𝐵 ran 𝑔) ⊆ X𝑦𝐴 (𝑔𝑦))
10192, 100eqsstrrd 4017 . . . . . . . . . . 11 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ((𝐵 ran 𝑔) ↑m 𝐴) ⊆ X𝑦𝐴 (𝑔𝑦))
102 ssrab 4066 . . . . . . . . . . . . 13 (X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ↔ (X𝑦𝐴 (𝑔𝑦) ⊆ (𝐵m 𝐴) ∧ ∀𝑓X 𝑦𝐴 (𝑔𝑦)(𝐺 Σg 𝑓) ∈ 𝑈))
103102simprbi 496 . . . . . . . . . . . 12 (X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} → ∀𝑓X 𝑦𝐴 (𝑔𝑦)(𝐺 Σg 𝑓) ∈ 𝑈)
104103ad2antll 728 . . . . . . . . . . 11 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑓X 𝑦𝐴 (𝑔𝑦)(𝐺 Σg 𝑓) ∈ 𝑈)
105 ssralv 4046 . . . . . . . . . . 11 (((𝐵 ran 𝑔) ↑m 𝐴) ⊆ X𝑦𝐴 (𝑔𝑦) → (∀𝑓X 𝑦𝐴 (𝑔𝑦)(𝐺 Σg 𝑓) ∈ 𝑈 → ∀𝑓 ∈ ((𝐵 ran 𝑔) ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))
106101, 104, 105sylc 65 . . . . . . . . . 10 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑓 ∈ ((𝐵 ran 𝑔) ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)
107 eleq2 2818 . . . . . . . . . . . 12 (𝑢 = (𝐵 ran 𝑔) → (𝑋𝑢𝑋 ∈ (𝐵 ran 𝑔)))
108 oveq1 7421 . . . . . . . . . . . . 13 (𝑢 = (𝐵 ran 𝑔) → (𝑢m 𝐴) = ((𝐵 ran 𝑔) ↑m 𝐴))
109108raleqdv 3321 . . . . . . . . . . . 12 (𝑢 = (𝐵 ran 𝑔) → (∀𝑓 ∈ (𝑢m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈 ↔ ∀𝑓 ∈ ((𝐵 ran 𝑔) ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))
110107, 109anbi12d 631 . . . . . . . . . . 11 (𝑢 = (𝐵 ran 𝑔) → ((𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈) ↔ (𝑋 ∈ (𝐵 ran 𝑔) ∧ ∀𝑓 ∈ ((𝐵 ran 𝑔) ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)))
111110rspcev 3608 . . . . . . . . . 10 (((𝐵 ran 𝑔) ∈ 𝐽 ∧ (𝑋 ∈ (𝐵 ran 𝑔) ∧ ∀𝑓 ∈ ((𝐵 ran 𝑔) ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))
11276, 89, 106, 111syl12anc 836 . . . . . . . . 9 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))
113112ex 412 . . . . . . . 8 ((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) → (((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)))
1141133adantr3 1169 . . . . . . 7 ((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦))) → (((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)))
115 eleq2 2818 . . . . . . . . 9 (𝑥 = X𝑦𝐴 (𝑔𝑦) → ((𝐴 × {𝑋}) ∈ 𝑥 ↔ (𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦)))
116 sseq1 4003 . . . . . . . . 9 (𝑥 = X𝑦𝐴 (𝑔𝑦) → (𝑥 ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ↔ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}))
117115, 116anbi12d 631 . . . . . . . 8 (𝑥 = X𝑦𝐴 (𝑔𝑦) → (((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) ↔ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})))
118117imbi1d 341 . . . . . . 7 (𝑥 = X𝑦𝐴 (𝑔𝑦) → ((((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)) ↔ (((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))))
119114, 118syl5ibrcom 246 . . . . . 6 ((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦))) → (𝑥 = X𝑦𝐴 (𝑔𝑦) → (((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))))
120119expimpd 453 . . . . 5 (𝜑 → (((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) → (((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))))
121120exlimdv 1929 . . . 4 (𝜑 → (∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) → (((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))))
122121impd 410 . . 3 (𝜑 → ((∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) ∧ ((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)))
123122exlimdv 1929 . 2 (𝜑 → (∃𝑥(∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) ∧ ((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)))
12452, 123mpd 15 1 (𝜑 → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wex 1774  wcel 2099  {cab 2705  wral 3057  wrex 3066  {crab 3428  Vcvv 3470  cdif 3942  cin 3944  wss 3945  𝒫 cpw 4598  {csn 4624   cuni 4903   cint 4944  cmpt 5225   × cxp 5670  ccnv 5671  ran crn 5673  cima 5675   Fn wfn 6537  wf 6538  ontowfo 6540  cfv 6542  (class class class)co 7414  m cmap 8838  Xcixp 8909  Fincfn 8957  chash 14315  Basecbs 17173  TopOpenctopn 17396  topGenctg 17412  tcpt 17413   Σg cgsu 17415  Mndcmnd 18687  .gcmg 19016  CMndccmn 19728  Topctop 22788  TopOnctopon 22805   Cn ccn 23121  ko cxko 23458  TopMndctmd 23967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9380  df-fi 9428  df-oi 9527  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-n0 12497  df-z 12583  df-uz 12847  df-fz 13511  df-fzo 13654  df-seq 13993  df-hash 14316  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-rest 17397  df-0g 17416  df-gsum 17417  df-topgen 17418  df-pt 17419  df-mre 17559  df-mrc 17560  df-acs 17562  df-plusf 18592  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-submnd 18734  df-mulg 19017  df-cntz 19261  df-cmn 19730  df-top 22789  df-topon 22806  df-topsp 22828  df-bases 22842  df-cn 23124  df-cnp 23125  df-cmp 23284  df-tx 23459  df-xko 23460  df-tmd 23969
This theorem is referenced by:  tsmsxp  24052
  Copyright terms: Public domain W3C validator
OSZAR »