![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tngngpim | Structured version Visualization version GIF version |
Description: The induced metric of a normed group is a function. (Contributed by AV, 19-Oct-2021.) |
Ref | Expression |
---|---|
tngngpim.t | ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) |
tngngpim.n | ⊢ 𝑁 = (norm‘𝐺) |
tngngpim.x | ⊢ 𝑋 = (Base‘𝐺) |
tngngpim.d | ⊢ 𝐷 = (dist‘𝑇) |
Ref | Expression |
---|---|
tngngpim | ⊢ (𝐺 ∈ NrmGrp → 𝐷:(𝑋 × 𝑋)⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tngngpim.x | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
2 | tngngpim.n | . . 3 ⊢ 𝑁 = (norm‘𝐺) | |
3 | 1, 2 | nmf 24561 | . 2 ⊢ (𝐺 ∈ NrmGrp → 𝑁:𝑋⟶ℝ) |
4 | tngngpim.t | . . . . . 6 ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) | |
5 | 2 | oveq2i 7428 | . . . . . 6 ⊢ (𝐺 toNrmGrp 𝑁) = (𝐺 toNrmGrp (norm‘𝐺)) |
6 | 4, 5 | eqtri 2753 | . . . . 5 ⊢ 𝑇 = (𝐺 toNrmGrp (norm‘𝐺)) |
7 | 6 | nrmtngnrm 24612 | . . . 4 ⊢ (𝐺 ∈ NrmGrp → (𝑇 ∈ NrmGrp ∧ (norm‘𝑇) = (norm‘𝐺))) |
8 | tngngpim.d | . . . . . . . 8 ⊢ 𝐷 = (dist‘𝑇) | |
9 | 4, 1, 8 | tngngp2 24606 | . . . . . . 7 ⊢ (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋)))) |
10 | simpr 483 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋)) → 𝐷 ∈ (Met‘𝑋)) | |
11 | 9, 10 | biimtrdi 252 | . . . . . 6 ⊢ (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp → 𝐷 ∈ (Met‘𝑋))) |
12 | 11 | com12 32 | . . . . 5 ⊢ (𝑇 ∈ NrmGrp → (𝑁:𝑋⟶ℝ → 𝐷 ∈ (Met‘𝑋))) |
13 | 12 | adantr 479 | . . . 4 ⊢ ((𝑇 ∈ NrmGrp ∧ (norm‘𝑇) = (norm‘𝐺)) → (𝑁:𝑋⟶ℝ → 𝐷 ∈ (Met‘𝑋))) |
14 | 7, 13 | syl 17 | . . 3 ⊢ (𝐺 ∈ NrmGrp → (𝑁:𝑋⟶ℝ → 𝐷 ∈ (Met‘𝑋))) |
15 | metf 24273 | . . 3 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ) | |
16 | 14, 15 | syl6 35 | . 2 ⊢ (𝐺 ∈ NrmGrp → (𝑁:𝑋⟶ℝ → 𝐷:(𝑋 × 𝑋)⟶ℝ)) |
17 | 3, 16 | mpd 15 | 1 ⊢ (𝐺 ∈ NrmGrp → 𝐷:(𝑋 × 𝑋)⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 × cxp 5675 ⟶wf 6543 ‘cfv 6547 (class class class)co 7417 ℝcr 11137 Basecbs 17180 distcds 17242 Grpcgrp 18895 Metcmet 21276 normcnm 24522 NrmGrpcngp 24523 toNrmGrp ctng 24524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-map 8845 df-en 8963 df-dom 8964 df-sdom 8965 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-q 12963 df-rp 13007 df-xneg 13124 df-xadd 13125 df-xmul 13126 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-plusg 17246 df-tset 17252 df-ds 17255 df-rest 17404 df-topn 17405 df-0g 17423 df-topgen 17425 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-grp 18898 df-minusg 18899 df-sbg 18900 df-psmet 21282 df-xmet 21283 df-met 21284 df-bl 21285 df-mopn 21286 df-top 22833 df-topon 22850 df-topsp 22872 df-bases 22886 df-xms 24263 df-ms 24264 df-nm 24528 df-ngp 24529 df-tng 24530 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |