Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tocyc01 Structured version   Visualization version   GIF version

Theorem tocyc01 32839
Description: Permutation cycles built from the empty set or a singleton are the identity. (Contributed by Thierry Arnoux, 21-Nov-2023.)
Hypothesis
Ref Expression
tocyc01.1 𝐶 = (toCyc‘𝐷)
Assertion
Ref Expression
tocyc01 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → (𝐶𝑊) = ( I ↾ 𝐷))

Proof of Theorem tocyc01
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 tocyc01.1 . . . . 5 𝐶 = (toCyc‘𝐷)
2 simpl 482 . . . . 5 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → 𝐷𝑉)
3 simpr 484 . . . . . . . . 9 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → 𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1})))
43elin1d 4198 . . . . . . . 8 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → 𝑊 ∈ dom 𝐶)
5 eqid 2728 . . . . . . . . . 10 (SymGrp‘𝐷) = (SymGrp‘𝐷)
6 eqid 2728 . . . . . . . . . 10 (Base‘(SymGrp‘𝐷)) = (Base‘(SymGrp‘𝐷))
71, 5, 6tocycf 32838 . . . . . . . . 9 (𝐷𝑉𝐶:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘(SymGrp‘𝐷)))
8 fdm 6731 . . . . . . . . 9 (𝐶:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘(SymGrp‘𝐷)) → dom 𝐶 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
92, 7, 83syl 18 . . . . . . . 8 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → dom 𝐶 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
104, 9eleqtrd 2831 . . . . . . 7 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → 𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
11 id 22 . . . . . . . . 9 (𝑤 = 𝑊𝑤 = 𝑊)
12 dmeq 5906 . . . . . . . . 9 (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊)
13 eqidd 2729 . . . . . . . . 9 (𝑤 = 𝑊𝐷 = 𝐷)
1411, 12, 13f1eq123d 6831 . . . . . . . 8 (𝑤 = 𝑊 → (𝑤:dom 𝑤1-1𝐷𝑊:dom 𝑊1-1𝐷))
1514elrab 3682 . . . . . . 7 (𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
1610, 15sylib 217 . . . . . 6 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
1716simpld 494 . . . . 5 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → 𝑊 ∈ Word 𝐷)
1816simprd 495 . . . . 5 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → 𝑊:dom 𝑊1-1𝐷)
191, 2, 17, 18tocycfv 32830 . . . 4 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
2019adantr 480 . . 3 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 0) → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
21 hasheq0 14354 . . . . . 6 (𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1})) → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅))
223, 21syl 17 . . . . 5 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅))
2322biimpa 476 . . . 4 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 0) → 𝑊 = ∅)
24 rneq 5938 . . . . . . . . . 10 (𝑊 = ∅ → ran 𝑊 = ran ∅)
25 rn0 5928 . . . . . . . . . 10 ran ∅ = ∅
2624, 25eqtrdi 2784 . . . . . . . . 9 (𝑊 = ∅ → ran 𝑊 = ∅)
2726difeq2d 4120 . . . . . . . 8 (𝑊 = ∅ → (𝐷 ∖ ran 𝑊) = (𝐷 ∖ ∅))
28 dif0 4373 . . . . . . . 8 (𝐷 ∖ ∅) = 𝐷
2927, 28eqtrdi 2784 . . . . . . 7 (𝑊 = ∅ → (𝐷 ∖ ran 𝑊) = 𝐷)
3029reseq2d 5985 . . . . . 6 (𝑊 = ∅ → ( I ↾ (𝐷 ∖ ran 𝑊)) = ( I ↾ 𝐷))
31 cnveq 5876 . . . . . . . . 9 (𝑊 = ∅ → 𝑊 = ∅)
32 cnv0 6145 . . . . . . . . 9 ∅ = ∅
3331, 32eqtrdi 2784 . . . . . . . 8 (𝑊 = ∅ → 𝑊 = ∅)
3433coeq2d 5865 . . . . . . 7 (𝑊 = ∅ → ((𝑊 cyclShift 1) ∘ 𝑊) = ((𝑊 cyclShift 1) ∘ ∅))
35 co02 6264 . . . . . . 7 ((𝑊 cyclShift 1) ∘ ∅) = ∅
3634, 35eqtrdi 2784 . . . . . 6 (𝑊 = ∅ → ((𝑊 cyclShift 1) ∘ 𝑊) = ∅)
3730, 36uneq12d 4163 . . . . 5 (𝑊 = ∅ → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) = (( I ↾ 𝐷) ∪ ∅))
38 un0 4391 . . . . 5 (( I ↾ 𝐷) ∪ ∅) = ( I ↾ 𝐷)
3937, 38eqtrdi 2784 . . . 4 (𝑊 = ∅ → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) = ( I ↾ 𝐷))
4023, 39syl 17 . . 3 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 0) → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) = ( I ↾ 𝐷))
4120, 40eqtrd 2768 . 2 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 0) → (𝐶𝑊) = ( I ↾ 𝐷))
4219adantr 480 . . 3 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
4317adantr 480 . . . . . . 7 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → 𝑊 ∈ Word 𝐷)
44 1zzd 12623 . . . . . . 7 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → 1 ∈ ℤ)
45 simpr 484 . . . . . . 7 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → (♯‘𝑊) = 1)
46 1cshid 32680 . . . . . . 7 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ ∧ (♯‘𝑊) = 1) → (𝑊 cyclShift 1) = 𝑊)
4743, 44, 45, 46syl3anc 1369 . . . . . 6 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → (𝑊 cyclShift 1) = 𝑊)
4847coeq1d 5864 . . . . 5 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → ((𝑊 cyclShift 1) ∘ 𝑊) = (𝑊𝑊))
49 wrdf 14501 . . . . . 6 (𝑊 ∈ Word 𝐷𝑊:(0..^(♯‘𝑊))⟶𝐷)
50 ffun 6725 . . . . . 6 (𝑊:(0..^(♯‘𝑊))⟶𝐷 → Fun 𝑊)
51 funcocnv2 6864 . . . . . 6 (Fun 𝑊 → (𝑊𝑊) = ( I ↾ ran 𝑊))
5243, 49, 50, 514syl 19 . . . . 5 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → (𝑊𝑊) = ( I ↾ ran 𝑊))
5348, 52eqtrd 2768 . . . 4 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → ((𝑊 cyclShift 1) ∘ 𝑊) = ( I ↾ ran 𝑊))
5453uneq2d 4162 . . 3 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ( I ↾ ran 𝑊)))
55 resundi 5999 . . . 4 ( I ↾ ((𝐷 ∖ ran 𝑊) ∪ ran 𝑊)) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ( I ↾ ran 𝑊))
56 frn 6729 . . . . . . 7 (𝑊:(0..^(♯‘𝑊))⟶𝐷 → ran 𝑊𝐷)
57 undifr 4483 . . . . . . 7 (ran 𝑊𝐷 ↔ ((𝐷 ∖ ran 𝑊) ∪ ran 𝑊) = 𝐷)
5856, 57sylib 217 . . . . . 6 (𝑊:(0..^(♯‘𝑊))⟶𝐷 → ((𝐷 ∖ ran 𝑊) ∪ ran 𝑊) = 𝐷)
5943, 49, 583syl 18 . . . . 5 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → ((𝐷 ∖ ran 𝑊) ∪ ran 𝑊) = 𝐷)
6059reseq2d 5985 . . . 4 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → ( I ↾ ((𝐷 ∖ ran 𝑊) ∪ ran 𝑊)) = ( I ↾ 𝐷))
6155, 60eqtr3id 2782 . . 3 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ( I ↾ ran 𝑊)) = ( I ↾ 𝐷))
6242, 54, 613eqtrd 2772 . 2 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → (𝐶𝑊) = ( I ↾ 𝐷))
633elin2d 4199 . . . . 5 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → 𝑊 ∈ (♯ “ {0, 1}))
64 hashf 14329 . . . . . 6 ♯:V⟶(ℕ0 ∪ {+∞})
65 ffn 6722 . . . . . 6 (♯:V⟶(ℕ0 ∪ {+∞}) → ♯ Fn V)
66 elpreima 7067 . . . . . 6 (♯ Fn V → (𝑊 ∈ (♯ “ {0, 1}) ↔ (𝑊 ∈ V ∧ (♯‘𝑊) ∈ {0, 1})))
6764, 65, 66mp2b 10 . . . . 5 (𝑊 ∈ (♯ “ {0, 1}) ↔ (𝑊 ∈ V ∧ (♯‘𝑊) ∈ {0, 1}))
6863, 67sylib 217 . . . 4 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → (𝑊 ∈ V ∧ (♯‘𝑊) ∈ {0, 1}))
6968simprd 495 . . 3 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → (♯‘𝑊) ∈ {0, 1})
70 elpri 4651 . . 3 ((♯‘𝑊) ∈ {0, 1} → ((♯‘𝑊) = 0 ∨ (♯‘𝑊) = 1))
7169, 70syl 17 . 2 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → ((♯‘𝑊) = 0 ∨ (♯‘𝑊) = 1))
7241, 62, 71mpjaodan 957 1 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → (𝐶𝑊) = ( I ↾ 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 846   = wceq 1534  wcel 2099  {crab 3429  Vcvv 3471  cdif 3944  cun 3945  cin 3946  wss 3947  c0 4323  {csn 4629  {cpr 4631   I cid 5575  ccnv 5677  dom cdm 5678  ran crn 5679  cres 5680  cima 5681  ccom 5682  Fun wfun 6542   Fn wfn 6543  wf 6544  1-1wf1 6545  cfv 6548  (class class class)co 7420  0cc0 11138  1c1 11139  +∞cpnf 11275  0cn0 12502  cz 12588  ..^cfzo 13659  chash 14321  Word cword 14496   cyclShift ccsh 14770  Basecbs 17179  SymGrpcsymg 19320  toCycctocyc 32827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-er 8724  df-map 8846  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-sup 9465  df-inf 9466  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-xnn0 12575  df-z 12589  df-uz 12853  df-rp 13007  df-fz 13517  df-fzo 13660  df-fl 13789  df-mod 13867  df-hash 14322  df-word 14497  df-concat 14553  df-substr 14623  df-pfx 14653  df-csh 14771  df-struct 17115  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209  df-plusg 17245  df-tset 17251  df-efmnd 18820  df-symg 19321  df-tocyc 32828
This theorem is referenced by:  tocyccntz  32865
  Copyright terms: Public domain W3C validator
OSZAR »