MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwap1 Structured version   Visualization version   GIF version

Theorem vdwap1 16949
Description: Value of a length-1 arithmetic progression. (Contributed by Mario Carneiro, 18-Aug-2014.)
Assertion
Ref Expression
vdwap1 ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘1)𝐷) = {𝐴})

Proof of Theorem vdwap1
StepHypRef Expression
1 1e0p1 12752 . . . . 5 1 = (0 + 1)
21fveq2i 6899 . . . 4 (AP‘1) = (AP‘(0 + 1))
32oveqi 7432 . . 3 (𝐴(AP‘1)𝐷) = (𝐴(AP‘(0 + 1))𝐷)
4 0nn0 12520 . . . 4 0 ∈ ℕ0
5 vdwapun 16946 . . . 4 ((0 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘(0 + 1))𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘0)𝐷)))
64, 5mp3an1 1444 . . 3 ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘(0 + 1))𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘0)𝐷)))
73, 6eqtrid 2777 . 2 ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘1)𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘0)𝐷)))
8 nnaddcl 12268 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴 + 𝐷) ∈ ℕ)
9 vdwap0 16948 . . . . 5 (((𝐴 + 𝐷) ∈ ℕ ∧ 𝐷 ∈ ℕ) → ((𝐴 + 𝐷)(AP‘0)𝐷) = ∅)
108, 9sylancom 586 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ((𝐴 + 𝐷)(AP‘0)𝐷) = ∅)
1110uneq2d 4160 . . 3 ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘0)𝐷)) = ({𝐴} ∪ ∅))
12 un0 4392 . . 3 ({𝐴} ∪ ∅) = {𝐴}
1311, 12eqtrdi 2781 . 2 ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘0)𝐷)) = {𝐴})
147, 13eqtrd 2765 1 ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘1)𝐷) = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  cun 3942  c0 4322  {csn 4630  cfv 6549  (class class class)co 7419  0cc0 11140  1c1 11141   + caddc 11143  cn 12245  0cn0 12505  APcvdwa 16937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-n0 12506  df-z 12592  df-uz 12856  df-fz 13520  df-vdwap 16940
This theorem is referenced by:  vdwlem12  16964  vdwlem13  16965
  Copyright terms: Public domain W3C validator
OSZAR »