![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vdwap1 | Structured version Visualization version GIF version |
Description: Value of a length-1 arithmetic progression. (Contributed by Mario Carneiro, 18-Aug-2014.) |
Ref | Expression |
---|---|
vdwap1 | ⊢ ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘1)𝐷) = {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1e0p1 12752 | . . . . 5 ⊢ 1 = (0 + 1) | |
2 | 1 | fveq2i 6899 | . . . 4 ⊢ (AP‘1) = (AP‘(0 + 1)) |
3 | 2 | oveqi 7432 | . . 3 ⊢ (𝐴(AP‘1)𝐷) = (𝐴(AP‘(0 + 1))𝐷) |
4 | 0nn0 12520 | . . . 4 ⊢ 0 ∈ ℕ0 | |
5 | vdwapun 16946 | . . . 4 ⊢ ((0 ∈ ℕ0 ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘(0 + 1))𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘0)𝐷))) | |
6 | 4, 5 | mp3an1 1444 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘(0 + 1))𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘0)𝐷))) |
7 | 3, 6 | eqtrid 2777 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘1)𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘0)𝐷))) |
8 | nnaddcl 12268 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴 + 𝐷) ∈ ℕ) | |
9 | vdwap0 16948 | . . . . 5 ⊢ (((𝐴 + 𝐷) ∈ ℕ ∧ 𝐷 ∈ ℕ) → ((𝐴 + 𝐷)(AP‘0)𝐷) = ∅) | |
10 | 8, 9 | sylancom 586 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ((𝐴 + 𝐷)(AP‘0)𝐷) = ∅) |
11 | 10 | uneq2d 4160 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘0)𝐷)) = ({𝐴} ∪ ∅)) |
12 | un0 4392 | . . 3 ⊢ ({𝐴} ∪ ∅) = {𝐴} | |
13 | 11, 12 | eqtrdi 2781 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘0)𝐷)) = {𝐴}) |
14 | 7, 13 | eqtrd 2765 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘1)𝐷) = {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∪ cun 3942 ∅c0 4322 {csn 4630 ‘cfv 6549 (class class class)co 7419 0cc0 11140 1c1 11141 + caddc 11143 ℕcn 12245 ℕ0cn0 12505 APcvdwa 16937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-n0 12506 df-z 12592 df-uz 12856 df-fz 13520 df-vdwap 16940 |
This theorem is referenced by: vdwlem12 16964 vdwlem13 16965 |
Copyright terms: Public domain | W3C validator |