![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1e0p1 | Structured version Visualization version GIF version |
Description: The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
1e0p1 | ⊢ 1 = (0 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0p1e1 12372 | . 2 ⊢ (0 + 1) = 1 | |
2 | 1 | eqcomi 2737 | 1 ⊢ 1 = (0 + 1) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 (class class class)co 7426 0cc0 11146 1c1 11147 + caddc 11149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-po 5594 df-so 5595 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-pnf 11288 df-mnf 11289 df-ltxr 11291 |
This theorem is referenced by: 6p5e11 12788 7p4e11 12791 8p3e11 12796 9p2e11 12802 fz1ssfz0 13637 fz0to3un2pr 13643 fzo01 13754 bcp1nk 14316 pfx1 14693 arisum2 15847 ege2le3 16074 ef4p 16097 efgt1p2 16098 efgt1p 16099 bitsmod 16418 prmdiv 16761 prmreclem2 16893 vdwap1 16953 11prm 17091 631prm 17103 mulgnn0p1 19047 gsummptfzsplitl 19895 itgcnlem 25739 dveflem 25931 ply1rem 26120 vieta1lem2 26266 vieta1 26267 pserdvlem2 26385 pserdv2 26387 abelthlem6 26393 abelthlem9 26397 cosne0 26483 logf1o2 26604 logtayl 26614 ang180lem3 26763 birthdaylem2 26904 ftalem5 27029 ppi2 27122 ppiublem2 27156 ppiub 27157 bclbnd 27233 bposlem2 27238 lgsdir2lem3 27280 lgseisenlem1 27328 axlowdimlem13 28785 spthispth 29560 uhgrwkspthlem2 29588 upgr3v3e3cycl 30010 upgr4cycl4dv4e 30015 ballotlemii 34156 ballotlem1c 34160 subfacval2 34830 cvmliftlem5 34932 aks6d1c5lem1 41639 sticksstones11 41660 sticksstones12 41662 metakunt24 41712 3cubeslem1 42135 halffl 44707 sinaover2ne0 45285 stoweidlem11 45428 stoweidlem13 45430 stirlinglem7 45497 fourierdlem48 45571 fourierdlem49 45572 fourierdlem69 45592 fourierdlem79 45602 fourierdlem93 45616 etransclem7 45658 etransclem25 45676 etransclem26 45677 etransclem37 45688 tworepnotupword 46301 iccpartlt 46793 31prm 46966 1odd 47311 itcoval1 47814 ackval1 47832 ackval41a 47845 |
Copyright terms: Public domain | W3C validator |