MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yon12 Structured version   Visualization version   GIF version

Theorem yon12 18260
Description: Value of the Yoneda embedding at a morphism. The partially evaluated Yoneda embedding is also the contravariant Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017.)
Hypotheses
Ref Expression
yon11.y 𝑌 = (Yon‘𝐶)
yon11.b 𝐵 = (Base‘𝐶)
yon11.c (𝜑𝐶 ∈ Cat)
yon11.p (𝜑𝑋𝐵)
yon11.h 𝐻 = (Hom ‘𝐶)
yon11.z (𝜑𝑍𝐵)
yon12.x · = (comp‘𝐶)
yon12.w (𝜑𝑊𝐵)
yon12.f (𝜑𝐹 ∈ (𝑊𝐻𝑍))
yon12.g (𝜑𝐺 ∈ (𝑍𝐻𝑋))
Assertion
Ref Expression
yon12 (𝜑 → (((𝑍(2nd ‘((1st𝑌)‘𝑋))𝑊)‘𝐹)‘𝐺) = (𝐺(⟨𝑊, 𝑍· 𝑋)𝐹))

Proof of Theorem yon12
StepHypRef Expression
1 yon11.y . . . . . . . . . 10 𝑌 = (Yon‘𝐶)
2 yon11.c . . . . . . . . . 10 (𝜑𝐶 ∈ Cat)
3 eqid 2725 . . . . . . . . . 10 (oppCat‘𝐶) = (oppCat‘𝐶)
4 eqid 2725 . . . . . . . . . 10 (HomF‘(oppCat‘𝐶)) = (HomF‘(oppCat‘𝐶))
51, 2, 3, 4yonval 18256 . . . . . . . . 9 (𝜑𝑌 = (⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))
65fveq2d 6900 . . . . . . . 8 (𝜑 → (1st𝑌) = (1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶)))))
76fveq1d 6898 . . . . . . 7 (𝜑 → ((1st𝑌)‘𝑋) = ((1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))‘𝑋))
87fveq2d 6900 . . . . . 6 (𝜑 → (2nd ‘((1st𝑌)‘𝑋)) = (2nd ‘((1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))‘𝑋)))
98oveqd 7436 . . . . 5 (𝜑 → (𝑍(2nd ‘((1st𝑌)‘𝑋))𝑊) = (𝑍(2nd ‘((1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))‘𝑋))𝑊))
109fveq1d 6898 . . . 4 (𝜑 → ((𝑍(2nd ‘((1st𝑌)‘𝑋))𝑊)‘𝐹) = ((𝑍(2nd ‘((1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))‘𝑋))𝑊)‘𝐹))
11 eqid 2725 . . . . 5 (⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))) = (⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶)))
12 yon11.b . . . . 5 𝐵 = (Base‘𝐶)
133oppccat 17707 . . . . . 6 (𝐶 ∈ Cat → (oppCat‘𝐶) ∈ Cat)
142, 13syl 17 . . . . 5 (𝜑 → (oppCat‘𝐶) ∈ Cat)
15 eqid 2725 . . . . . 6 (SetCat‘ran (Homf𝐶)) = (SetCat‘ran (Homf𝐶))
16 fvex 6909 . . . . . . . 8 (Homf𝐶) ∈ V
1716rnex 7918 . . . . . . 7 ran (Homf𝐶) ∈ V
1817a1i 11 . . . . . 6 (𝜑 → ran (Homf𝐶) ∈ V)
19 ssidd 4000 . . . . . 6 (𝜑 → ran (Homf𝐶) ⊆ ran (Homf𝐶))
203, 4, 15, 2, 18, 19oppchofcl 18255 . . . . 5 (𝜑 → (HomF‘(oppCat‘𝐶)) ∈ ((𝐶 ×c (oppCat‘𝐶)) Func (SetCat‘ran (Homf𝐶))))
213, 12oppcbas 17702 . . . . 5 𝐵 = (Base‘(oppCat‘𝐶))
22 yon11.p . . . . 5 (𝜑𝑋𝐵)
23 eqid 2725 . . . . 5 ((1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))‘𝑋) = ((1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))‘𝑋)
24 yon11.z . . . . 5 (𝜑𝑍𝐵)
25 eqid 2725 . . . . 5 (Hom ‘(oppCat‘𝐶)) = (Hom ‘(oppCat‘𝐶))
26 eqid 2725 . . . . 5 (Id‘𝐶) = (Id‘𝐶)
27 yon12.w . . . . 5 (𝜑𝑊𝐵)
28 yon12.f . . . . . 6 (𝜑𝐹 ∈ (𝑊𝐻𝑍))
29 yon11.h . . . . . . 7 𝐻 = (Hom ‘𝐶)
3029, 3oppchom 17699 . . . . . 6 (𝑍(Hom ‘(oppCat‘𝐶))𝑊) = (𝑊𝐻𝑍)
3128, 30eleqtrrdi 2836 . . . . 5 (𝜑𝐹 ∈ (𝑍(Hom ‘(oppCat‘𝐶))𝑊))
3211, 12, 2, 14, 20, 21, 22, 23, 24, 25, 26, 27, 31curf12 18222 . . . 4 (𝜑 → ((𝑍(2nd ‘((1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))‘𝑋))𝑊)‘𝐹) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑍⟩(2nd ‘(HomF‘(oppCat‘𝐶)))⟨𝑋, 𝑊⟩)𝐹))
3310, 32eqtrd 2765 . . 3 (𝜑 → ((𝑍(2nd ‘((1st𝑌)‘𝑋))𝑊)‘𝐹) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑍⟩(2nd ‘(HomF‘(oppCat‘𝐶)))⟨𝑋, 𝑊⟩)𝐹))
3433fveq1d 6898 . 2 (𝜑 → (((𝑍(2nd ‘((1st𝑌)‘𝑋))𝑊)‘𝐹)‘𝐺) = ((((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑍⟩(2nd ‘(HomF‘(oppCat‘𝐶)))⟨𝑋, 𝑊⟩)𝐹)‘𝐺))
35 eqid 2725 . . 3 (comp‘(oppCat‘𝐶)) = (comp‘(oppCat‘𝐶))
3612, 29, 26, 2, 22catidcl 17665 . . . 4 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑋))
3729, 3oppchom 17699 . . . 4 (𝑋(Hom ‘(oppCat‘𝐶))𝑋) = (𝑋𝐻𝑋)
3836, 37eleqtrrdi 2836 . . 3 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘(oppCat‘𝐶))𝑋))
39 yon12.g . . . 4 (𝜑𝐺 ∈ (𝑍𝐻𝑋))
4029, 3oppchom 17699 . . . 4 (𝑋(Hom ‘(oppCat‘𝐶))𝑍) = (𝑍𝐻𝑋)
4139, 40eleqtrrdi 2836 . . 3 (𝜑𝐺 ∈ (𝑋(Hom ‘(oppCat‘𝐶))𝑍))
424, 14, 21, 25, 22, 24, 22, 27, 35, 38, 31, 41hof2 18252 . 2 (𝜑 → ((((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑍⟩(2nd ‘(HomF‘(oppCat‘𝐶)))⟨𝑋, 𝑊⟩)𝐹)‘𝐺) = ((𝐹(⟨𝑋, 𝑍⟩(comp‘(oppCat‘𝐶))𝑊)𝐺)(⟨𝑋, 𝑋⟩(comp‘(oppCat‘𝐶))𝑊)((Id‘𝐶)‘𝑋)))
43 yon12.x . . . . 5 · = (comp‘𝐶)
4412, 43, 3, 22, 24, 27oppcco 17701 . . . 4 (𝜑 → (𝐹(⟨𝑋, 𝑍⟩(comp‘(oppCat‘𝐶))𝑊)𝐺) = (𝐺(⟨𝑊, 𝑍· 𝑋)𝐹))
4544oveq1d 7434 . . 3 (𝜑 → ((𝐹(⟨𝑋, 𝑍⟩(comp‘(oppCat‘𝐶))𝑊)𝐺)(⟨𝑋, 𝑋⟩(comp‘(oppCat‘𝐶))𝑊)((Id‘𝐶)‘𝑋)) = ((𝐺(⟨𝑊, 𝑍· 𝑋)𝐹)(⟨𝑋, 𝑋⟩(comp‘(oppCat‘𝐶))𝑊)((Id‘𝐶)‘𝑋)))
4612, 43, 3, 22, 22, 27oppcco 17701 . . 3 (𝜑 → ((𝐺(⟨𝑊, 𝑍· 𝑋)𝐹)(⟨𝑋, 𝑋⟩(comp‘(oppCat‘𝐶))𝑊)((Id‘𝐶)‘𝑋)) = (((Id‘𝐶)‘𝑋)(⟨𝑊, 𝑋· 𝑋)(𝐺(⟨𝑊, 𝑍· 𝑋)𝐹)))
4712, 29, 43, 2, 27, 24, 22, 28, 39catcocl 17668 . . . 4 (𝜑 → (𝐺(⟨𝑊, 𝑍· 𝑋)𝐹) ∈ (𝑊𝐻𝑋))
4812, 29, 26, 2, 27, 43, 22, 47catlid 17666 . . 3 (𝜑 → (((Id‘𝐶)‘𝑋)(⟨𝑊, 𝑋· 𝑋)(𝐺(⟨𝑊, 𝑍· 𝑋)𝐹)) = (𝐺(⟨𝑊, 𝑍· 𝑋)𝐹))
4945, 46, 483eqtrd 2769 . 2 (𝜑 → ((𝐹(⟨𝑋, 𝑍⟩(comp‘(oppCat‘𝐶))𝑊)𝐺)(⟨𝑋, 𝑋⟩(comp‘(oppCat‘𝐶))𝑊)((Id‘𝐶)‘𝑋)) = (𝐺(⟨𝑊, 𝑍· 𝑋)𝐹))
5034, 42, 493eqtrd 2769 1 (𝜑 → (((𝑍(2nd ‘((1st𝑌)‘𝑋))𝑊)‘𝐹)‘𝐺) = (𝐺(⟨𝑊, 𝑍· 𝑋)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  Vcvv 3461  cop 4636  ran crn 5679  cfv 6549  (class class class)co 7419  1st c1st 7992  2nd c2nd 7993  Basecbs 17183  Hom chom 17247  compcco 17248  Catccat 17647  Idccid 17648  Homf chomf 17649  oppCatcoppc 17694  SetCatcsetc 18067   curryF ccurf 18205  HomFchof 18243  Yoncyon 18244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-fz 13520  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-hom 17260  df-cco 17261  df-cat 17651  df-cid 17652  df-homf 17653  df-comf 17654  df-oppc 17695  df-func 17847  df-setc 18068  df-xpc 18166  df-curf 18209  df-hof 18245  df-yon 18246
This theorem is referenced by:  yonedalem4c  18272  yonedalem3b  18274  yonedainv  18276  yonffthlem  18277
  Copyright terms: Public domain W3C validator
OSZAR »