MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem21 Structured version   Visualization version   GIF version

Theorem yonedalem21 18272
Description: Lemma for yoneda 18282. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y 𝑌 = (Yon‘𝐶)
yoneda.b 𝐵 = (Base‘𝐶)
yoneda.1 1 = (Id‘𝐶)
yoneda.o 𝑂 = (oppCat‘𝐶)
yoneda.s 𝑆 = (SetCat‘𝑈)
yoneda.t 𝑇 = (SetCat‘𝑉)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomF𝑄)
yoneda.r 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (𝜑𝐶 ∈ Cat)
yoneda.w (𝜑𝑉𝑊)
yoneda.u (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
yoneda.v (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
yonedalem21.f (𝜑𝐹 ∈ (𝑂 Func 𝑆))
yonedalem21.x (𝜑𝑋𝐵)
Assertion
Ref Expression
yonedalem21 (𝜑 → (𝐹(1st𝑍)𝑋) = (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹))

Proof of Theorem yonedalem21
StepHypRef Expression
1 yoneda.z . . . . . 6 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
21fveq2i 6905 . . . . 5 (1st𝑍) = (1st ‘(𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂))))
32oveqi 7439 . . . 4 (𝐹(1st𝑍)𝑋) = (𝐹(1st ‘(𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂))))𝑋)
4 df-ov 7429 . . . 4 (𝐹(1st ‘(𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂))))𝑋) = ((1st ‘(𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂))))‘⟨𝐹, 𝑋⟩)
53, 4eqtri 2756 . . 3 (𝐹(1st𝑍)𝑋) = ((1st ‘(𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂))))‘⟨𝐹, 𝑋⟩)
6 eqid 2728 . . . . 5 (𝑄 ×c 𝑂) = (𝑄 ×c 𝑂)
7 yoneda.q . . . . . 6 𝑄 = (𝑂 FuncCat 𝑆)
87fucbas 17958 . . . . 5 (𝑂 Func 𝑆) = (Base‘𝑄)
9 yoneda.o . . . . . 6 𝑂 = (oppCat‘𝐶)
10 yoneda.b . . . . . 6 𝐵 = (Base‘𝐶)
119, 10oppcbas 17706 . . . . 5 𝐵 = (Base‘𝑂)
126, 8, 11xpcbas 18176 . . . 4 ((𝑂 Func 𝑆) × 𝐵) = (Base‘(𝑄 ×c 𝑂))
13 eqid 2728 . . . . 5 ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)) = ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂))
14 eqid 2728 . . . . 5 ((oppCat‘𝑄) ×c 𝑄) = ((oppCat‘𝑄) ×c 𝑄)
15 yoneda.c . . . . . . . . 9 (𝜑𝐶 ∈ Cat)
169oppccat 17711 . . . . . . . . 9 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
1715, 16syl 17 . . . . . . . 8 (𝜑𝑂 ∈ Cat)
18 yoneda.w . . . . . . . . . 10 (𝜑𝑉𝑊)
19 yoneda.v . . . . . . . . . . 11 (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
2019unssbd 4190 . . . . . . . . . 10 (𝜑𝑈𝑉)
2118, 20ssexd 5328 . . . . . . . . 9 (𝜑𝑈 ∈ V)
22 yoneda.s . . . . . . . . . 10 𝑆 = (SetCat‘𝑈)
2322setccat 18081 . . . . . . . . 9 (𝑈 ∈ V → 𝑆 ∈ Cat)
2421, 23syl 17 . . . . . . . 8 (𝜑𝑆 ∈ Cat)
257, 17, 24fuccat 17969 . . . . . . 7 (𝜑𝑄 ∈ Cat)
26 eqid 2728 . . . . . . 7 (𝑄 2ndF 𝑂) = (𝑄 2ndF 𝑂)
276, 25, 17, 262ndfcl 18196 . . . . . 6 (𝜑 → (𝑄 2ndF 𝑂) ∈ ((𝑄 ×c 𝑂) Func 𝑂))
28 eqid 2728 . . . . . . . 8 (oppCat‘𝑄) = (oppCat‘𝑄)
29 relfunc 17855 . . . . . . . . 9 Rel (𝐶 Func 𝑄)
30 yoneda.y . . . . . . . . . 10 𝑌 = (Yon‘𝐶)
31 yoneda.u . . . . . . . . . 10 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
3230, 15, 9, 22, 7, 21, 31yoncl 18261 . . . . . . . . 9 (𝜑𝑌 ∈ (𝐶 Func 𝑄))
33 1st2ndbr 8052 . . . . . . . . 9 ((Rel (𝐶 Func 𝑄) ∧ 𝑌 ∈ (𝐶 Func 𝑄)) → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
3429, 32, 33sylancr 585 . . . . . . . 8 (𝜑 → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
359, 28, 34funcoppc 17868 . . . . . . 7 (𝜑 → (1st𝑌)(𝑂 Func (oppCat‘𝑄))tpos (2nd𝑌))
36 df-br 5153 . . . . . . 7 ((1st𝑌)(𝑂 Func (oppCat‘𝑄))tpos (2nd𝑌) ↔ ⟨(1st𝑌), tpos (2nd𝑌)⟩ ∈ (𝑂 Func (oppCat‘𝑄)))
3735, 36sylib 217 . . . . . 6 (𝜑 → ⟨(1st𝑌), tpos (2nd𝑌)⟩ ∈ (𝑂 Func (oppCat‘𝑄)))
3827, 37cofucl 17881 . . . . 5 (𝜑 → (⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ∈ ((𝑄 ×c 𝑂) Func (oppCat‘𝑄)))
39 eqid 2728 . . . . . 6 (𝑄 1stF 𝑂) = (𝑄 1stF 𝑂)
406, 25, 17, 391stfcl 18195 . . . . 5 (𝜑 → (𝑄 1stF 𝑂) ∈ ((𝑄 ×c 𝑂) Func 𝑄))
4113, 14, 38, 40prfcl 18201 . . . 4 (𝜑 → ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)) ∈ ((𝑄 ×c 𝑂) Func ((oppCat‘𝑄) ×c 𝑄)))
42 yoneda.h . . . . 5 𝐻 = (HomF𝑄)
43 yoneda.t . . . . 5 𝑇 = (SetCat‘𝑉)
4419unssad 4189 . . . . 5 (𝜑 → ran (Homf𝑄) ⊆ 𝑉)
4542, 28, 43, 25, 18, 44hofcl 18258 . . . 4 (𝜑𝐻 ∈ (((oppCat‘𝑄) ×c 𝑄) Func 𝑇))
46 yonedalem21.f . . . . 5 (𝜑𝐹 ∈ (𝑂 Func 𝑆))
47 yonedalem21.x . . . . 5 (𝜑𝑋𝐵)
4846, 47opelxpd 5721 . . . 4 (𝜑 → ⟨𝐹, 𝑋⟩ ∈ ((𝑂 Func 𝑆) × 𝐵))
4912, 41, 45, 48cofu1 17877 . . 3 (𝜑 → ((1st ‘(𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂))))‘⟨𝐹, 𝑋⟩) = ((1st𝐻)‘((1st ‘((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))‘⟨𝐹, 𝑋⟩)))
505, 49eqtrid 2780 . 2 (𝜑 → (𝐹(1st𝑍)𝑋) = ((1st𝐻)‘((1st ‘((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))‘⟨𝐹, 𝑋⟩)))
51 eqid 2728 . . . . . 6 (Hom ‘(𝑄 ×c 𝑂)) = (Hom ‘(𝑄 ×c 𝑂))
5213, 12, 51, 38, 40, 48prf1 18198 . . . . 5 (𝜑 → ((1st ‘((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))‘⟨𝐹, 𝑋⟩) = ⟨((1st ‘(⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)))‘⟨𝐹, 𝑋⟩), ((1st ‘(𝑄 1stF 𝑂))‘⟨𝐹, 𝑋⟩)⟩)
5312, 27, 37, 48cofu1 17877 . . . . . . 7 (𝜑 → ((1st ‘(⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)))‘⟨𝐹, 𝑋⟩) = ((1st ‘⟨(1st𝑌), tpos (2nd𝑌)⟩)‘((1st ‘(𝑄 2ndF 𝑂))‘⟨𝐹, 𝑋⟩)))
54 fvex 6915 . . . . . . . . . 10 (1st𝑌) ∈ V
55 fvex 6915 . . . . . . . . . . 11 (2nd𝑌) ∈ V
5655tposex 8272 . . . . . . . . . 10 tpos (2nd𝑌) ∈ V
5754, 56op1st 8007 . . . . . . . . 9 (1st ‘⟨(1st𝑌), tpos (2nd𝑌)⟩) = (1st𝑌)
5857a1i 11 . . . . . . . 8 (𝜑 → (1st ‘⟨(1st𝑌), tpos (2nd𝑌)⟩) = (1st𝑌))
596, 12, 51, 25, 17, 26, 482ndf1 18193 . . . . . . . . 9 (𝜑 → ((1st ‘(𝑄 2ndF 𝑂))‘⟨𝐹, 𝑋⟩) = (2nd ‘⟨𝐹, 𝑋⟩))
60 op2ndg 8012 . . . . . . . . . 10 ((𝐹 ∈ (𝑂 Func 𝑆) ∧ 𝑋𝐵) → (2nd ‘⟨𝐹, 𝑋⟩) = 𝑋)
6146, 47, 60syl2anc 582 . . . . . . . . 9 (𝜑 → (2nd ‘⟨𝐹, 𝑋⟩) = 𝑋)
6259, 61eqtrd 2768 . . . . . . . 8 (𝜑 → ((1st ‘(𝑄 2ndF 𝑂))‘⟨𝐹, 𝑋⟩) = 𝑋)
6358, 62fveq12d 6909 . . . . . . 7 (𝜑 → ((1st ‘⟨(1st𝑌), tpos (2nd𝑌)⟩)‘((1st ‘(𝑄 2ndF 𝑂))‘⟨𝐹, 𝑋⟩)) = ((1st𝑌)‘𝑋))
6453, 63eqtrd 2768 . . . . . 6 (𝜑 → ((1st ‘(⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)))‘⟨𝐹, 𝑋⟩) = ((1st𝑌)‘𝑋))
656, 12, 51, 25, 17, 39, 481stf1 18190 . . . . . . 7 (𝜑 → ((1st ‘(𝑄 1stF 𝑂))‘⟨𝐹, 𝑋⟩) = (1st ‘⟨𝐹, 𝑋⟩))
66 op1stg 8011 . . . . . . . 8 ((𝐹 ∈ (𝑂 Func 𝑆) ∧ 𝑋𝐵) → (1st ‘⟨𝐹, 𝑋⟩) = 𝐹)
6746, 47, 66syl2anc 582 . . . . . . 7 (𝜑 → (1st ‘⟨𝐹, 𝑋⟩) = 𝐹)
6865, 67eqtrd 2768 . . . . . 6 (𝜑 → ((1st ‘(𝑄 1stF 𝑂))‘⟨𝐹, 𝑋⟩) = 𝐹)
6964, 68opeq12d 4886 . . . . 5 (𝜑 → ⟨((1st ‘(⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)))‘⟨𝐹, 𝑋⟩), ((1st ‘(𝑄 1stF 𝑂))‘⟨𝐹, 𝑋⟩)⟩ = ⟨((1st𝑌)‘𝑋), 𝐹⟩)
7052, 69eqtrd 2768 . . . 4 (𝜑 → ((1st ‘((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))‘⟨𝐹, 𝑋⟩) = ⟨((1st𝑌)‘𝑋), 𝐹⟩)
7170fveq2d 6906 . . 3 (𝜑 → ((1st𝐻)‘((1st ‘((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))‘⟨𝐹, 𝑋⟩)) = ((1st𝐻)‘⟨((1st𝑌)‘𝑋), 𝐹⟩))
72 df-ov 7429 . . 3 (((1st𝑌)‘𝑋)(1st𝐻)𝐹) = ((1st𝐻)‘⟨((1st𝑌)‘𝑋), 𝐹⟩)
7371, 72eqtr4di 2786 . 2 (𝜑 → ((1st𝐻)‘((1st ‘((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))‘⟨𝐹, 𝑋⟩)) = (((1st𝑌)‘𝑋)(1st𝐻)𝐹))
74 eqid 2728 . . . 4 (𝑂 Nat 𝑆) = (𝑂 Nat 𝑆)
757, 74fuchom 17959 . . 3 (𝑂 Nat 𝑆) = (Hom ‘𝑄)
7630, 10, 15, 47, 9, 22, 21, 31yon1cl 18262 . . 3 (𝜑 → ((1st𝑌)‘𝑋) ∈ (𝑂 Func 𝑆))
7742, 25, 8, 75, 76, 46hof1 18253 . 2 (𝜑 → (((1st𝑌)‘𝑋)(1st𝐻)𝐹) = (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹))
7850, 73, 773eqtrd 2772 1 (𝜑 → (𝐹(1st𝑍)𝑋) = (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  Vcvv 3473  cun 3947  wss 3949  cop 4638   class class class wbr 5152   × cxp 5680  ran crn 5683  Rel wrel 5687  cfv 6553  (class class class)co 7426  1st c1st 7997  2nd c2nd 7998  tpos ctpos 8237  Basecbs 17187  Hom chom 17251  Catccat 17651  Idccid 17652  Homf chomf 17653  oppCatcoppc 17698   Func cfunc 17847  func ccofu 17849   Nat cnat 17938   FuncCat cfuc 17939  SetCatcsetc 18071   ×c cxpc 18166   1stF c1stf 18167   2ndF c2ndf 18168   ⟨,⟩F cprf 18169   evalF cevlf 18208  HomFchof 18247  Yoncyon 18248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-tpos 8238  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-ixp 8923  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-fz 13525  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-hom 17264  df-cco 17265  df-cat 17655  df-cid 17656  df-homf 17657  df-comf 17658  df-oppc 17699  df-func 17851  df-cofu 17853  df-nat 17940  df-fuc 17941  df-setc 18072  df-xpc 18170  df-1stf 18171  df-2ndf 18172  df-prf 18173  df-curf 18213  df-hof 18249  df-yon 18250
This theorem is referenced by:  yonedalem3a  18273  yonedalem3b  18278  yonedainv  18280  yonffthlem  18281
  Copyright terms: Public domain W3C validator
OSZAR »