MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  5t5e25 Structured version   Visualization version   GIF version

Theorem 5t5e25 12804
Description: 5 times 5 equals 25. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
5t5e25 (5 · 5) = 25

Proof of Theorem 5t5e25
StepHypRef Expression
1 5nn0 12516 . 2 5 ∈ ℕ0
2 4nn0 12515 . 2 4 ∈ ℕ0
3 df-5 12302 . 2 5 = (4 + 1)
4 5t4e20 12803 . . 3 (5 · 4) = 20
5 2nn0 12513 . . . 4 2 ∈ ℕ0
65dec0u 12722 . . 3 (10 · 2) = 20
74, 6eqtr4i 2759 . 2 (5 · 4) = (10 · 2)
8 dfdec10 12704 . . 3 25 = ((10 · 2) + 5)
98eqcomi 2737 . 2 ((10 · 2) + 5) = 25
101, 2, 3, 7, 94t3lem 12798 1 (5 · 5) = 25
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  (class class class)co 7414  0cc0 11132  1c1 11133   + caddc 11135   · cmul 11137  2c2 12291  4c4 12293  5c5 12294  cdc 12701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11274  df-mnf 11275  df-ltxr 11277  df-sub 11470  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-dec 12702
This theorem is referenced by:  2exp16  17053  prmlem1  17070  prmlem2  17082  1259lem1  17093  1259lem4  17096  2503lem1  17099  2503lem2  17100  4001lem1  17103  4001prm  17107  3lexlogpow2ineq2  41524  3lexlogpow5ineq5  41525  sqn5i  41853  resqrtvalex  43069  imsqrtvalex  43070  fmtno5lem2  46888  flsqrt5  46928
  Copyright terms: Public domain W3C validator
OSZAR »