![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > algextdeglem5 | Structured version Visualization version GIF version |
Description: Lemma for algextdeg 33393. The subspace 𝑍 of annihilators of 𝐴 is a principal ideal generated by the minimal polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
Ref | Expression |
---|---|
algextdeg.k | ⊢ 𝐾 = (𝐸 ↾s 𝐹) |
algextdeg.l | ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
algextdeg.d | ⊢ 𝐷 = ( deg1 ‘𝐸) |
algextdeg.m | ⊢ 𝑀 = (𝐸 minPoly 𝐹) |
algextdeg.f | ⊢ (𝜑 → 𝐸 ∈ Field) |
algextdeg.e | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
algextdeg.a | ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) |
algextdeglem.o | ⊢ 𝑂 = (𝐸 evalSub1 𝐹) |
algextdeglem.y | ⊢ 𝑃 = (Poly1‘𝐾) |
algextdeglem.u | ⊢ 𝑈 = (Base‘𝑃) |
algextdeglem.g | ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) |
algextdeglem.n | ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) |
algextdeglem.z | ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) |
algextdeglem.q | ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) |
algextdeglem.j | ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) |
Ref | Expression |
---|---|
algextdeglem5 | ⊢ (𝜑 → 𝑍 = ((RSpan‘𝑃)‘{(𝑀‘𝐴)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | algextdeglem.o | . . 3 ⊢ 𝑂 = (𝐸 evalSub1 𝐹) | |
2 | algextdeglem.y | . . . 4 ⊢ 𝑃 = (Poly1‘𝐾) | |
3 | algextdeg.k | . . . . 5 ⊢ 𝐾 = (𝐸 ↾s 𝐹) | |
4 | 3 | fveq2i 6900 | . . . 4 ⊢ (Poly1‘𝐾) = (Poly1‘(𝐸 ↾s 𝐹)) |
5 | 2, 4 | eqtri 2756 | . . 3 ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) |
6 | eqid 2728 | . . 3 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
7 | algextdeg.f | . . 3 ⊢ (𝜑 → 𝐸 ∈ Field) | |
8 | algextdeg.e | . . 3 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
9 | eqid 2728 | . . . . 5 ⊢ (0g‘𝐸) = (0g‘𝐸) | |
10 | 7 | fldcrngd 20637 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ CRing) |
11 | issdrg 20676 | . . . . . . 7 ⊢ (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐹) ∈ DivRing)) | |
12 | 8, 11 | sylib 217 | . . . . . 6 ⊢ (𝜑 → (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐹) ∈ DivRing)) |
13 | 12 | simp2d 1141 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
14 | 1, 3, 6, 9, 10, 13 | irngssv 33366 | . . . 4 ⊢ (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸)) |
15 | algextdeg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) | |
16 | 14, 15 | sseldd 3981 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝐸)) |
17 | eqid 2728 | . . 3 ⊢ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)} = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)} | |
18 | eqid 2728 | . . 3 ⊢ (RSpan‘𝑃) = (RSpan‘𝑃) | |
19 | eqid 2728 | . . 3 ⊢ (idlGen1p‘(𝐸 ↾s 𝐹)) = (idlGen1p‘(𝐸 ↾s 𝐹)) | |
20 | 1, 5, 6, 7, 8, 16, 9, 17, 18, 19 | ply1annig1p 33375 | . 2 ⊢ (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)} = ((RSpan‘𝑃)‘{((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)})})) |
21 | algextdeglem.z | . . . 4 ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) | |
22 | 10 | crnggrpd 20187 | . . . . . . . 8 ⊢ (𝜑 → 𝐸 ∈ Grp) |
23 | 22 | grpmndd 18903 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ Mnd) |
24 | 7 | flddrngd 20636 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐸 ∈ DivRing) |
25 | subrgsubg 20516 | . . . . . . . . . . . 12 ⊢ (𝐹 ∈ (SubRing‘𝐸) → 𝐹 ∈ (SubGrp‘𝐸)) | |
26 | 6 | subgss 19082 | . . . . . . . . . . . 12 ⊢ (𝐹 ∈ (SubGrp‘𝐸) → 𝐹 ⊆ (Base‘𝐸)) |
27 | 13, 25, 26 | 3syl 18 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹 ⊆ (Base‘𝐸)) |
28 | 16 | snssd 4813 | . . . . . . . . . . 11 ⊢ (𝜑 → {𝐴} ⊆ (Base‘𝐸)) |
29 | 27, 28 | unssd 4186 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (Base‘𝐸)) |
30 | 6, 24, 29 | fldgensdrg 33014 | . . . . . . . . 9 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸)) |
31 | sdrgsubrg 20679 | . . . . . . . . 9 ⊢ ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸) → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸)) | |
32 | subrgsubg 20516 | . . . . . . . . 9 ⊢ ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubGrp‘𝐸)) | |
33 | 30, 31, 32 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubGrp‘𝐸)) |
34 | 9 | subg0cl 19089 | . . . . . . . 8 ⊢ ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubGrp‘𝐸) → (0g‘𝐸) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
35 | 33, 34 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝐸) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
36 | 6, 24, 29 | fldgenssv 33015 | . . . . . . 7 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ (Base‘𝐸)) |
37 | algextdeg.l | . . . . . . . 8 ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) | |
38 | 37, 6, 9 | ress0g 18722 | . . . . . . 7 ⊢ ((𝐸 ∈ Mnd ∧ (0g‘𝐸) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ (Base‘𝐸)) → (0g‘𝐸) = (0g‘𝐿)) |
39 | 23, 35, 36, 38 | syl3anc 1369 | . . . . . 6 ⊢ (𝜑 → (0g‘𝐸) = (0g‘𝐿)) |
40 | 39 | sneqd 4641 | . . . . 5 ⊢ (𝜑 → {(0g‘𝐸)} = {(0g‘𝐿)}) |
41 | 40 | imaeq2d 6063 | . . . 4 ⊢ (𝜑 → (◡𝐺 “ {(0g‘𝐸)}) = (◡𝐺 “ {(0g‘𝐿)})) |
42 | 21, 41 | eqtr4id 2787 | . . 3 ⊢ (𝜑 → 𝑍 = (◡𝐺 “ {(0g‘𝐸)})) |
43 | algextdeglem.g | . . . . 5 ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) | |
44 | algextdeglem.u | . . . . . 6 ⊢ 𝑈 = (Base‘𝑃) | |
45 | 44 | mpteq1i 5244 | . . . . 5 ⊢ (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) = (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) |
46 | 43, 45 | eqtri 2756 | . . . 4 ⊢ 𝐺 = (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) |
47 | 1, 5, 6, 10, 13, 16, 9, 17, 46 | ply1annidllem 33372 | . . 3 ⊢ (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)} = (◡𝐺 “ {(0g‘𝐸)})) |
48 | 42, 47 | eqtr4d 2771 | . 2 ⊢ (𝜑 → 𝑍 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)}) |
49 | algextdeg.m | . . . . 5 ⊢ 𝑀 = (𝐸 minPoly 𝐹) | |
50 | 1, 5, 6, 7, 8, 16, 9, 17, 18, 19, 49 | minplyval 33376 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) = ((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)})) |
51 | 50 | sneqd 4641 | . . 3 ⊢ (𝜑 → {(𝑀‘𝐴)} = {((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)})}) |
52 | 51 | fveq2d 6901 | . 2 ⊢ (𝜑 → ((RSpan‘𝑃)‘{(𝑀‘𝐴)}) = ((RSpan‘𝑃)‘{((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)})})) |
53 | 20, 48, 52 | 3eqtr4d 2778 | 1 ⊢ (𝜑 → 𝑍 = ((RSpan‘𝑃)‘{(𝑀‘𝐴)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 {crab 3429 ∪ cun 3945 ⊆ wss 3947 {csn 4629 ∪ cuni 4908 ↦ cmpt 5231 ◡ccnv 5677 dom cdm 5678 “ cima 5681 ‘cfv 6548 (class class class)co 7420 [cec 8723 Basecbs 17180 ↾s cress 17209 0gc0g 17421 /s cqus 17487 Mndcmnd 18694 SubGrpcsubg 19075 ~QG cqg 19077 SubRingcsubrg 20506 DivRingcdr 20624 Fieldcfield 20625 SubDRingcsdrg 20674 RSpancrsp 21103 Poly1cpl1 22096 evalSub1 ces1 22232 deg1 cdg1 26000 idlGen1pcig1p 26078 fldGen cfldgen 33010 IntgRing cirng 33361 minPoly cminply 33370 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 ax-addf 11218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-of 7685 df-ofr 7686 df-om 7871 df-1st 7993 df-2nd 7994 df-supp 8166 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9387 df-sup 9466 df-inf 9467 df-oi 9534 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 df-9 12313 df-n0 12504 df-z 12590 df-dec 12709 df-uz 12854 df-fz 13518 df-fzo 13661 df-seq 14000 df-hash 14323 df-struct 17116 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-ress 17210 df-plusg 17246 df-mulr 17247 df-starv 17248 df-sca 17249 df-vsca 17250 df-ip 17251 df-tset 17252 df-ple 17253 df-ds 17255 df-unif 17256 df-hom 17257 df-cco 17258 df-0g 17423 df-gsum 17424 df-prds 17429 df-pws 17431 df-mre 17566 df-mrc 17567 df-acs 17569 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-mhm 18740 df-submnd 18741 df-grp 18893 df-minusg 18894 df-sbg 18895 df-mulg 19024 df-subg 19078 df-ghm 19168 df-cntz 19268 df-cmn 19737 df-abl 19738 df-mgp 20075 df-rng 20093 df-ur 20122 df-srg 20127 df-ring 20175 df-cring 20176 df-oppr 20273 df-dvdsr 20296 df-unit 20297 df-invr 20327 df-dvr 20340 df-rhm 20411 df-subrng 20483 df-subrg 20508 df-drng 20626 df-field 20627 df-sdrg 20675 df-lmod 20745 df-lss 20816 df-lsp 20856 df-sra 21058 df-rgmod 21059 df-lidl 21104 df-rsp 21105 df-rlreg 21230 df-cnfld 21280 df-assa 21787 df-asp 21788 df-ascl 21789 df-psr 21842 df-mvr 21843 df-mpl 21844 df-opsr 21846 df-evls 22018 df-evl 22019 df-psr1 22099 df-vr1 22100 df-ply1 22101 df-coe1 22102 df-evls1 22234 df-evl1 22235 df-mdeg 26001 df-deg1 26002 df-mon1 26079 df-uc1p 26080 df-q1p 26081 df-r1p 26082 df-ig1p 26083 df-fldgen 33011 df-irng 33362 df-minply 33371 |
This theorem is referenced by: algextdeglem6 33390 |
Copyright terms: Public domain | W3C validator |