MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldtopn Structured version   Visualization version   GIF version

Theorem cnfldtopn 24742
Description: The topology of the complex numbers. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypothesis
Ref Expression
cnfldtopn.1 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
cnfldtopn 𝐽 = (MetOpen‘(abs ∘ − ))

Proof of Theorem cnfldtopn
StepHypRef Expression
1 cnfldtopn.1 . 2 𝐽 = (TopOpen‘ℂfld)
2 cnxmet 24733 . . 3 (abs ∘ − ) ∈ (∞Met‘ℂ)
3 eqid 2725 . . . 4 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
43mopntopon 24389 . . 3 ((abs ∘ − ) ∈ (∞Met‘ℂ) → (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ))
5 cnfldbas 21300 . . . 4 ℂ = (Base‘ℂfld)
6 cnfldtset 21306 . . . 4 (MetOpen‘(abs ∘ − )) = (TopSet‘ℂfld)
75, 6topontopn 22886 . . 3 ((MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ) → (MetOpen‘(abs ∘ − )) = (TopOpen‘ℂfld))
82, 4, 7mp2b 10 . 2 (MetOpen‘(abs ∘ − )) = (TopOpen‘ℂfld)
91, 8eqtr4i 2756 1 𝐽 = (MetOpen‘(abs ∘ − ))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  ccom 5682  cfv 6549  cc 11138  cmin 11476  abscabs 15217  TopOpenctopn 17406  ∞Metcxmet 21281  MetOpencmopn 21286  fldccnfld 21296  TopOnctopon 22856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9467  df-inf 9468  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-fz 13520  df-seq 14003  df-exp 14063  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-struct 17119  df-slot 17154  df-ndx 17166  df-base 17184  df-plusg 17249  df-mulr 17250  df-starv 17251  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-rest 17407  df-topn 17408  df-topgen 17428  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-cnfld 21297  df-top 22840  df-topon 22857  df-bases 22893
This theorem is referenced by:  cnfldhaus  24745  tgioo2  24763  recld2  24774  zdis  24776  reperflem  24778  addcnlem  24824  divcnOLD  24828  divcn  24830  dfii3  24847  cncfcn  24874  cnheibor  24925  cnllycmp  24926  ipcn  25218  lmclim  25275  cncmet  25294  recmet  25295  ellimc3  25852  dvlipcn  25971  lhop1lem  25990  ftc1lem6  26020  ulmdvlem3  26383  psercn  26408  pserdvlem2  26410  abelth  26423  dvlog2  26632  efopnlem2  26636  efopn  26637  logtayl  26639  cxpcn3  26728  rlimcnp  26942  xrlimcnp  26945  efrlim  26946  efrlimOLD  26947  lgamucov  27015  ftalem3  27052  smcnlem  30579  hhcnf  31787  tpr2rico  33644  cnllysconn  34986  ftc1cnnc  37296  binomcxplemdvbinom  43932  binomcxplemnotnn0  43935  limcrecl  45155  islpcn  45165
  Copyright terms: Public domain W3C validator
OSZAR »