Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemdvbinom Structured version   Visualization version   GIF version

Theorem binomcxplemdvbinom 43793
Description: Lemma for binomcxp 43797. By the power and chain rules, calculate the derivative of ((1 + 𝑏)↑𝑐-𝐶), with respect to 𝑏 in the disk of convergence 𝐷. We later multiply the derivative in the later binomcxplemdvsum 43795 by this derivative to show that ((1 + 𝑏)↑𝑐𝐶) (with a nonnegated 𝐶) and the later sum, since both at 𝑏 = 0 equal one, are the same. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a (𝜑𝐴 ∈ ℝ+)
binomcxp.b (𝜑𝐵 ∈ ℝ)
binomcxp.lt (𝜑 → (abs‘𝐵) < (abs‘𝐴))
binomcxp.c (𝜑𝐶 ∈ ℂ)
binomcxplem.f 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
binomcxplem.s 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
binomcxplem.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
binomcxplem.e 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))))
binomcxplem.d 𝐷 = (abs “ (0[,)𝑅))
Assertion
Ref Expression
binomcxplemdvbinom ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑏𝐷 ↦ ((1 + 𝑏)↑𝑐-𝐶))) = (𝑏𝐷 ↦ (-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1)))))
Distinct variable groups:   𝑗,𝑘,𝜑   𝑘,𝑏,𝐶   𝐶,𝑗   𝐹,𝑏,𝑘   𝑆,𝑟   𝑟,𝑏
Allowed substitution hints:   𝜑(𝑟,𝑏)   𝐴(𝑗,𝑘,𝑟,𝑏)   𝐵(𝑗,𝑘,𝑟,𝑏)   𝐶(𝑟)   𝐷(𝑗,𝑘,𝑟,𝑏)   𝑅(𝑗,𝑘,𝑟,𝑏)   𝑆(𝑗,𝑘,𝑏)   𝐸(𝑗,𝑘,𝑟,𝑏)   𝐹(𝑗,𝑟)

Proof of Theorem binomcxplemdvbinom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 binomcxplem.d . . . . 5 𝐷 = (abs “ (0[,)𝑅))
2 nfcv 2898 . . . . . 6 𝑏abs
3 nfcv 2898 . . . . . . 7 𝑏0
4 nfcv 2898 . . . . . . 7 𝑏[,)
5 binomcxplem.r . . . . . . . 8 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
6 nfcv 2898 . . . . . . . . . . . 12 𝑏 +
7 binomcxplem.s . . . . . . . . . . . . . 14 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
8 nfmpt1 5258 . . . . . . . . . . . . . 14 𝑏(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
97, 8nfcxfr 2896 . . . . . . . . . . . . 13 𝑏𝑆
10 nfcv 2898 . . . . . . . . . . . . 13 𝑏𝑟
119, 10nffv 6910 . . . . . . . . . . . 12 𝑏(𝑆𝑟)
123, 6, 11nfseq 14014 . . . . . . . . . . 11 𝑏seq0( + , (𝑆𝑟))
1312nfel1 2915 . . . . . . . . . 10 𝑏seq0( + , (𝑆𝑟)) ∈ dom ⇝
14 nfcv 2898 . . . . . . . . . 10 𝑏
1513, 14nfrabw 3465 . . . . . . . . 9 𝑏{𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }
16 nfcv 2898 . . . . . . . . 9 𝑏*
17 nfcv 2898 . . . . . . . . 9 𝑏 <
1815, 16, 17nfsup 9480 . . . . . . . 8 𝑏sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
195, 18nfcxfr 2896 . . . . . . 7 𝑏𝑅
203, 4, 19nfov 7454 . . . . . 6 𝑏(0[,)𝑅)
212, 20nfima 6074 . . . . 5 𝑏(abs “ (0[,)𝑅))
221, 21nfcxfr 2896 . . . 4 𝑏𝐷
23 nfcv 2898 . . . 4 𝑦𝐷
24 nfcv 2898 . . . 4 𝑦((1 + 𝑏)↑𝑐-𝐶)
25 nfcv 2898 . . . 4 𝑏((1 + 𝑦)↑𝑐-𝐶)
26 oveq2 7432 . . . . 5 (𝑏 = 𝑦 → (1 + 𝑏) = (1 + 𝑦))
2726oveq1d 7439 . . . 4 (𝑏 = 𝑦 → ((1 + 𝑏)↑𝑐-𝐶) = ((1 + 𝑦)↑𝑐-𝐶))
2822, 23, 24, 25, 27cbvmptf 5259 . . 3 (𝑏𝐷 ↦ ((1 + 𝑏)↑𝑐-𝐶)) = (𝑦𝐷 ↦ ((1 + 𝑦)↑𝑐-𝐶))
2928oveq2i 7435 . 2 (ℂ D (𝑏𝐷 ↦ ((1 + 𝑏)↑𝑐-𝐶))) = (ℂ D (𝑦𝐷 ↦ ((1 + 𝑦)↑𝑐-𝐶)))
30 cnelprrecn 11237 . . . . 5 ℂ ∈ {ℝ, ℂ}
3130a1i 11 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → ℂ ∈ {ℝ, ℂ})
32 1cnd 11245 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → 1 ∈ ℂ)
33 cnvimass 6088 . . . . . . . . . 10 (abs “ (0[,)𝑅)) ⊆ dom abs
341, 33eqsstri 4014 . . . . . . . . 9 𝐷 ⊆ dom abs
35 absf 15322 . . . . . . . . . 10 abs:ℂ⟶ℝ
3635fdmi 6737 . . . . . . . . 9 dom abs = ℂ
3734, 36sseqtri 4016 . . . . . . . 8 𝐷 ⊆ ℂ
3837a1i 11 . . . . . . 7 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝐷 ⊆ ℂ)
3938sselda 3980 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → 𝑦 ∈ ℂ)
4032, 39addcld 11269 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → (1 + 𝑦) ∈ ℂ)
41 simpr 483 . . . . . . 7 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → (1 + 𝑦) ∈ ℝ)
42 1cnd 11245 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → 1 ∈ ℂ)
4339adantr 479 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → 𝑦 ∈ ℂ)
4442, 43pncan2d 11609 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → ((1 + 𝑦) − 1) = 𝑦)
45 1red 11251 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → 1 ∈ ℝ)
4641, 45resubcld 11678 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → ((1 + 𝑦) − 1) ∈ ℝ)
4744, 46eqeltrrd 2829 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → 𝑦 ∈ ℝ)
48 1pneg1e0 12367 . . . . . . . . 9 (1 + -1) = 0
49 1red 11251 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → 1 ∈ ℝ)
5049renegcld 11677 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → -1 ∈ ℝ)
51 simpr 483 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
52 ffn 6725 . . . . . . . . . . . . . . . . . . . 20 (abs:ℂ⟶ℝ → abs Fn ℂ)
53 elpreima 7070 . . . . . . . . . . . . . . . . . . . 20 (abs Fn ℂ → (𝑦 ∈ (abs “ (0[,)𝑅)) ↔ (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,)𝑅))))
5435, 52, 53mp2b 10 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (abs “ (0[,)𝑅)) ↔ (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,)𝑅)))
5554simprbi 495 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (abs “ (0[,)𝑅)) → (abs‘𝑦) ∈ (0[,)𝑅))
5655, 1eleq2s 2846 . . . . . . . . . . . . . . . . 17 (𝑦𝐷 → (abs‘𝑦) ∈ (0[,)𝑅))
57 0re 11252 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
58 ssrab2 4075 . . . . . . . . . . . . . . . . . . . . 21 {𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ } ⊆ ℝ
59 ressxr 11294 . . . . . . . . . . . . . . . . . . . . 21 ℝ ⊆ ℝ*
6058, 59sstri 3989 . . . . . . . . . . . . . . . . . . . 20 {𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ } ⊆ ℝ*
61 supxrcl 13332 . . . . . . . . . . . . . . . . . . . 20 ({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ } ⊆ ℝ* → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*)
6260, 61ax-mp 5 . . . . . . . . . . . . . . . . . . 19 sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*
635, 62eqeltri 2824 . . . . . . . . . . . . . . . . . 18 𝑅 ∈ ℝ*
64 elico2 13426 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((abs‘𝑦) ∈ (0[,)𝑅) ↔ ((abs‘𝑦) ∈ ℝ ∧ 0 ≤ (abs‘𝑦) ∧ (abs‘𝑦) < 𝑅)))
6557, 63, 64mp2an 690 . . . . . . . . . . . . . . . . 17 ((abs‘𝑦) ∈ (0[,)𝑅) ↔ ((abs‘𝑦) ∈ ℝ ∧ 0 ≤ (abs‘𝑦) ∧ (abs‘𝑦) < 𝑅))
6656, 65sylib 217 . . . . . . . . . . . . . . . 16 (𝑦𝐷 → ((abs‘𝑦) ∈ ℝ ∧ 0 ≤ (abs‘𝑦) ∧ (abs‘𝑦) < 𝑅))
6766simp3d 1141 . . . . . . . . . . . . . . 15 (𝑦𝐷 → (abs‘𝑦) < 𝑅)
6867adantl 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → (abs‘𝑦) < 𝑅)
69 binomcxp.a . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ+)
70 binomcxp.b . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℝ)
71 binomcxp.lt . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘𝐵) < (abs‘𝐴))
72 binomcxp.c . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ ℂ)
73 binomcxplem.f . . . . . . . . . . . . . . . 16 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
7469, 70, 71, 72, 73, 7, 5binomcxplemradcnv 43792 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = 1)
7574adantr 479 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → 𝑅 = 1)
7668, 75breqtrd 5176 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → (abs‘𝑦) < 1)
7776adantr 479 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → (abs‘𝑦) < 1)
7851, 49absltd 15414 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → ((abs‘𝑦) < 1 ↔ (-1 < 𝑦𝑦 < 1)))
7977, 78mpbid 231 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → (-1 < 𝑦𝑦 < 1))
8079simpld 493 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → -1 < 𝑦)
8150, 51, 49, 80ltadd2dd 11409 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → (1 + -1) < (1 + 𝑦))
8248, 81eqbrtrrid 5186 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → 0 < (1 + 𝑦))
8347, 82syldan 589 . . . . . . 7 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → 0 < (1 + 𝑦))
8441, 83elrpd 13051 . . . . . 6 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → (1 + 𝑦) ∈ ℝ+)
8584ex 411 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → ((1 + 𝑦) ∈ ℝ → (1 + 𝑦) ∈ ℝ+))
86 eqid 2727 . . . . . 6 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
8786ellogdm 26591 . . . . 5 ((1 + 𝑦) ∈ (ℂ ∖ (-∞(,]0)) ↔ ((1 + 𝑦) ∈ ℂ ∧ ((1 + 𝑦) ∈ ℝ → (1 + 𝑦) ∈ ℝ+)))
8840, 85, 87sylanbrc 581 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → (1 + 𝑦) ∈ (ℂ ∖ (-∞(,]0)))
89 eldifi 4125 . . . . . 6 (𝑥 ∈ (ℂ ∖ (-∞(,]0)) → 𝑥 ∈ ℂ)
9089adantl 480 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ (ℂ ∖ (-∞(,]0))) → 𝑥 ∈ ℂ)
9172adantr 479 . . . . . . 7 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝐶 ∈ ℂ)
9291negcld 11594 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → -𝐶 ∈ ℂ)
9392adantr 479 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ (ℂ ∖ (-∞(,]0))) → -𝐶 ∈ ℂ)
9490, 93cxpcld 26660 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ (ℂ ∖ (-∞(,]0))) → (𝑥𝑐-𝐶) ∈ ℂ)
95 ovexd 7459 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ (ℂ ∖ (-∞(,]0))) → (-𝐶 · (𝑥𝑐(-𝐶 − 1))) ∈ V)
96 1cnd 11245 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ ℂ) → 1 ∈ ℂ)
97 simpr 483 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
9896, 97addcld 11269 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ ℂ) → (1 + 𝑥) ∈ ℂ)
99 c0ex 11244 . . . . . . . . 9 0 ∈ V
10099a1i 11 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ ℂ) → 0 ∈ V)
101 1cnd 11245 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 1 ∈ ℂ)
10231, 101dvmptc 25908 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑥 ∈ ℂ ↦ 1)) = (𝑥 ∈ ℂ ↦ 0))
10331dvmptid 25907 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1))
10431, 96, 100, 102, 97, 96, 103dvmptadd 25910 . . . . . . 7 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑥 ∈ ℂ ↦ (1 + 𝑥))) = (𝑥 ∈ ℂ ↦ (0 + 1)))
105 0p1e1 12370 . . . . . . . 8 (0 + 1) = 1
106105mpteq2i 5255 . . . . . . 7 (𝑥 ∈ ℂ ↦ (0 + 1)) = (𝑥 ∈ ℂ ↦ 1)
107104, 106eqtrdi 2783 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑥 ∈ ℂ ↦ (1 + 𝑥))) = (𝑥 ∈ ℂ ↦ 1))
108 fvex 6913 . . . . . . . 8 (TopOpen‘ℂfld) ∈ V
109 cnfldtps 24712 . . . . . . . . . 10 fld ∈ TopSp
110 cnfldbas 21288 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
111 eqid 2727 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
112110, 111tpsuni 22856 . . . . . . . . . 10 (ℂfld ∈ TopSp → ℂ = (TopOpen‘ℂfld))
113109, 112ax-mp 5 . . . . . . . . 9 ℂ = (TopOpen‘ℂfld)
114113restid 17420 . . . . . . . 8 ((TopOpen‘ℂfld) ∈ V → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
115108, 114ax-mp 5 . . . . . . 7 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
116115eqcomi 2736 . . . . . 6 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
117111cnfldtop 24718 . . . . . . . 8 (TopOpen‘ℂfld) ∈ Top
118 eqid 2727 . . . . . . . . . . . 12 (abs ∘ − ) = (abs ∘ − )
119118cnbl0 24708 . . . . . . . . . . 11 (𝑅 ∈ ℝ* → (abs “ (0[,)𝑅)) = (0(ball‘(abs ∘ − ))𝑅))
12063, 119ax-mp 5 . . . . . . . . . 10 (abs “ (0[,)𝑅)) = (0(ball‘(abs ∘ − ))𝑅)
1211, 120eqtri 2755 . . . . . . . . 9 𝐷 = (0(ball‘(abs ∘ − ))𝑅)
122 cnxmet 24707 . . . . . . . . . 10 (abs ∘ − ) ∈ (∞Met‘ℂ)
123 0cn 11242 . . . . . . . . . 10 0 ∈ ℂ
124111cnfldtopn 24716 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
125124blopn 24427 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → (0(ball‘(abs ∘ − ))𝑅) ∈ (TopOpen‘ℂfld))
126122, 123, 63, 125mp3an 1457 . . . . . . . . 9 (0(ball‘(abs ∘ − ))𝑅) ∈ (TopOpen‘ℂfld)
127121, 126eqeltri 2824 . . . . . . . 8 𝐷 ∈ (TopOpen‘ℂfld)
128 isopn3i 23004 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Top ∧ 𝐷 ∈ (TopOpen‘ℂfld)) → ((int‘(TopOpen‘ℂfld))‘𝐷) = 𝐷)
129117, 127, 128mp2an 690 . . . . . . 7 ((int‘(TopOpen‘ℂfld))‘𝐷) = 𝐷
130129a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → ((int‘(TopOpen‘ℂfld))‘𝐷) = 𝐷)
13131, 98, 96, 107, 38, 116, 111, 130dvmptres2 25912 . . . . 5 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑥𝐷 ↦ (1 + 𝑥))) = (𝑥𝐷 ↦ 1))
132 oveq2 7432 . . . . . . 7 (𝑥 = 𝑦 → (1 + 𝑥) = (1 + 𝑦))
133132cbvmptv 5263 . . . . . 6 (𝑥𝐷 ↦ (1 + 𝑥)) = (𝑦𝐷 ↦ (1 + 𝑦))
134133oveq2i 7435 . . . . 5 (ℂ D (𝑥𝐷 ↦ (1 + 𝑥))) = (ℂ D (𝑦𝐷 ↦ (1 + 𝑦)))
135 eqidd 2728 . . . . . 6 (𝑥 = 𝑦 → 1 = 1)
136135cbvmptv 5263 . . . . 5 (𝑥𝐷 ↦ 1) = (𝑦𝐷 ↦ 1)
137131, 134, 1363eqtr3g 2790 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑦𝐷 ↦ (1 + 𝑦))) = (𝑦𝐷 ↦ 1))
13886dvcncxp1 26695 . . . . 5 (-𝐶 ∈ ℂ → (ℂ D (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥𝑐-𝐶))) = (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (-𝐶 · (𝑥𝑐(-𝐶 − 1)))))
13992, 138syl 17 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥𝑐-𝐶))) = (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (-𝐶 · (𝑥𝑐(-𝐶 − 1)))))
140 oveq1 7431 . . . 4 (𝑥 = (1 + 𝑦) → (𝑥𝑐-𝐶) = ((1 + 𝑦)↑𝑐-𝐶))
141 oveq1 7431 . . . . 5 (𝑥 = (1 + 𝑦) → (𝑥𝑐(-𝐶 − 1)) = ((1 + 𝑦)↑𝑐(-𝐶 − 1)))
142141oveq2d 7440 . . . 4 (𝑥 = (1 + 𝑦) → (-𝐶 · (𝑥𝑐(-𝐶 − 1))) = (-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1))))
14331, 31, 88, 32, 94, 95, 137, 139, 140, 142dvmptco 25922 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑦𝐷 ↦ ((1 + 𝑦)↑𝑐-𝐶))) = (𝑦𝐷 ↦ ((-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1))) · 1)))
14491adantr 479 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → 𝐶 ∈ ℂ)
145144negcld 11594 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → -𝐶 ∈ ℂ)
146145, 32subcld 11607 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → (-𝐶 − 1) ∈ ℂ)
14740, 146cxpcld 26660 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → ((1 + 𝑦)↑𝑐(-𝐶 − 1)) ∈ ℂ)
148145, 147mulcld 11270 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → (-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1))) ∈ ℂ)
149148mulridd 11267 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → ((-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1))) · 1) = (-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1))))
150149mpteq2dva 5250 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑦𝐷 ↦ ((-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1))) · 1)) = (𝑦𝐷 ↦ (-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1)))))
151 nfcv 2898 . . . . 5 𝑏(-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1)))
152 nfcv 2898 . . . . 5 𝑦(-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1)))
153 oveq2 7432 . . . . . . 7 (𝑦 = 𝑏 → (1 + 𝑦) = (1 + 𝑏))
154153oveq1d 7439 . . . . . 6 (𝑦 = 𝑏 → ((1 + 𝑦)↑𝑐(-𝐶 − 1)) = ((1 + 𝑏)↑𝑐(-𝐶 − 1)))
155154oveq2d 7440 . . . . 5 (𝑦 = 𝑏 → (-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1))) = (-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1))))
15623, 22, 151, 152, 155cbvmptf 5259 . . . 4 (𝑦𝐷 ↦ (-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1)))) = (𝑏𝐷 ↦ (-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1))))
157156a1i 11 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑦𝐷 ↦ (-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1)))) = (𝑏𝐷 ↦ (-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1)))))
158143, 150, 1573eqtrd 2771 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑦𝐷 ↦ ((1 + 𝑦)↑𝑐-𝐶))) = (𝑏𝐷 ↦ (-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1)))))
15929, 158eqtrid 2779 1 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑏𝐷 ↦ ((1 + 𝑏)↑𝑐-𝐶))) = (𝑏𝐷 ↦ (-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  {crab 3428  Vcvv 3471  cdif 3944  wss 3947  {cpr 4632   cuni 4910   class class class wbr 5150  cmpt 5233  ccnv 5679  dom cdm 5680  cima 5683  ccom 5684   Fn wfn 6546  wf 6547  cfv 6551  (class class class)co 7424  supcsup 9469  cc 11142  cr 11143  0cc0 11144  1c1 11145   + caddc 11147   · cmul 11149  -∞cmnf 11282  *cxr 11283   < clt 11284  cle 11285  cmin 11480  -cneg 11481  cn 12248  0cn0 12508  +crp 13012  (,]cioc 13363  [,)cico 13364  seqcseq 14004  cexp 14064  abscabs 15219  cli 15466  t crest 17407  TopOpenctopn 17408  ∞Metcxmet 21269  ballcbl 21271  fldccnfld 21284  Topctop 22813  TopSpctps 22852  intcnt 22939   D cdv 25810  𝑐ccxp 26507  C𝑐cbcc 43776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-inf2 9670  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221  ax-pre-sup 11222  ax-addf 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-iin 5001  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-se 5636  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-isom 6560  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7689  df-om 7875  df-1st 7997  df-2nd 7998  df-supp 8170  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-2o 8492  df-er 8729  df-map 8851  df-pm 8852  df-ixp 8921  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-fsupp 9392  df-fi 9440  df-sup 9471  df-inf 9472  df-oi 9539  df-card 9968  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-div 11908  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12509  df-z 12595  df-dec 12714  df-uz 12859  df-q 12969  df-rp 13013  df-xneg 13130  df-xadd 13131  df-xmul 13132  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13523  df-fzo 13666  df-fl 13795  df-mod 13873  df-seq 14005  df-exp 14065  df-fac 14271  df-bc 14300  df-hash 14328  df-shft 15052  df-cj 15084  df-re 15085  df-im 15086  df-sqrt 15220  df-abs 15221  df-limsup 15453  df-clim 15470  df-rlim 15471  df-sum 15671  df-prod 15888  df-fallfac 15989  df-ef 16049  df-sin 16051  df-cos 16052  df-tan 16053  df-pi 16054  df-struct 17121  df-sets 17138  df-slot 17156  df-ndx 17168  df-base 17186  df-ress 17215  df-plusg 17251  df-mulr 17252  df-starv 17253  df-sca 17254  df-vsca 17255  df-ip 17256  df-tset 17257  df-ple 17258  df-ds 17260  df-unif 17261  df-hom 17262  df-cco 17263  df-rest 17409  df-topn 17410  df-0g 17428  df-gsum 17429  df-topgen 17430  df-pt 17431  df-prds 17434  df-xrs 17489  df-qtop 17494  df-imas 17495  df-xps 17497  df-mre 17571  df-mrc 17572  df-acs 17574  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-submnd 18746  df-mulg 19029  df-cntz 19273  df-cmn 19742  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-fbas 21281  df-fg 21282  df-cnfld 21285  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22867  df-cld 22941  df-ntr 22942  df-cls 22943  df-nei 23020  df-lp 23058  df-perf 23059  df-cn 23149  df-cnp 23150  df-haus 23237  df-cmp 23309  df-tx 23484  df-hmeo 23677  df-fil 23768  df-fm 23860  df-flim 23861  df-flf 23862  df-xms 24244  df-ms 24245  df-tms 24246  df-cncf 24816  df-limc 25813  df-dv 25814  df-log 26508  df-cxp 26509  df-bcc 43777
This theorem is referenced by:  binomcxplemnotnn0  43796
  Copyright terms: Public domain W3C validator
OSZAR »