MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decadd Structured version   Visualization version   GIF version

Theorem decadd 12756
Description: Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
decma.a 𝐴 ∈ ℕ0
decma.b 𝐵 ∈ ℕ0
decma.c 𝐶 ∈ ℕ0
decma.d 𝐷 ∈ ℕ0
decma.m 𝑀 = 𝐴𝐵
decma.n 𝑁 = 𝐶𝐷
decadd.e (𝐴 + 𝐶) = 𝐸
decadd.f (𝐵 + 𝐷) = 𝐹
Assertion
Ref Expression
decadd (𝑀 + 𝑁) = 𝐸𝐹

Proof of Theorem decadd
StepHypRef Expression
1 10nn0 12720 . . 3 10 ∈ ℕ0
2 decma.a . . 3 𝐴 ∈ ℕ0
3 decma.b . . 3 𝐵 ∈ ℕ0
4 decma.c . . 3 𝐶 ∈ ℕ0
5 decma.d . . 3 𝐷 ∈ ℕ0
6 decma.m . . . 4 𝑀 = 𝐴𝐵
7 dfdec10 12705 . . . 4 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
86, 7eqtri 2756 . . 3 𝑀 = ((10 · 𝐴) + 𝐵)
9 decma.n . . . 4 𝑁 = 𝐶𝐷
10 dfdec10 12705 . . . 4 𝐶𝐷 = ((10 · 𝐶) + 𝐷)
119, 10eqtri 2756 . . 3 𝑁 = ((10 · 𝐶) + 𝐷)
12 decadd.e . . 3 (𝐴 + 𝐶) = 𝐸
13 decadd.f . . 3 (𝐵 + 𝐷) = 𝐹
141, 2, 3, 4, 5, 8, 11, 12, 13numadd 12749 . 2 (𝑀 + 𝑁) = ((10 · 𝐸) + 𝐹)
15 dfdec10 12705 . 2 𝐸𝐹 = ((10 · 𝐸) + 𝐹)
1614, 15eqtr4i 2759 1 (𝑀 + 𝑁) = 𝐸𝐹
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  (class class class)co 7415  0cc0 11133  1c1 11134   + caddc 11136   · cmul 11138  0cn0 12497  cdc 12702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7418  df-om 7866  df-2nd 7989  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-er 8719  df-en 8959  df-dom 8960  df-sdom 8961  df-pnf 11275  df-mnf 11276  df-ltxr 11278  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-7 12305  df-8 12306  df-9 12307  df-n0 12498  df-dec 12703
This theorem is referenced by:  decaddm10  12761  decaddi  12762  10p10e20  12797  dec5dvds2  17028  2exp16  17054  37prm  17084  43prm  17085  317prm  17089  631prm  17090  1259lem2  17095  1259lem3  17096  1259lem4  17097  2503lem1  17100  2503lem2  17101  4001lem1  17104  4001lem2  17105  4001lem3  17106  log2ublem3  26874  log2ub  26875  1kp2ke3k  30250  hgt750lemd  34275  hgt750lem2  34279  12gcd5e1  41469  3lexlogpow5ineq1  41520  decpmul  41853  sqdeccom12  41854  sq3deccom12  41855  ex-decpmul  41859  resqrtvalex  43066  imsqrtvalex  43067  fmtno5lem4  46887  257prm  46892  fmtno4prmfac  46903  fmtno4nprmfac193  46905  fmtno5faclem3  46912  fmtno5fac  46913
  Copyright terms: Public domain W3C validator
OSZAR »