![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > decadd | Structured version Visualization version GIF version |
Description: Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
decma.a | ⊢ 𝐴 ∈ ℕ0 |
decma.b | ⊢ 𝐵 ∈ ℕ0 |
decma.c | ⊢ 𝐶 ∈ ℕ0 |
decma.d | ⊢ 𝐷 ∈ ℕ0 |
decma.m | ⊢ 𝑀 = ;𝐴𝐵 |
decma.n | ⊢ 𝑁 = ;𝐶𝐷 |
decadd.e | ⊢ (𝐴 + 𝐶) = 𝐸 |
decadd.f | ⊢ (𝐵 + 𝐷) = 𝐹 |
Ref | Expression |
---|---|
decadd | ⊢ (𝑀 + 𝑁) = ;𝐸𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 10nn0 12720 | . . 3 ⊢ ;10 ∈ ℕ0 | |
2 | decma.a | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
3 | decma.b | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
4 | decma.c | . . 3 ⊢ 𝐶 ∈ ℕ0 | |
5 | decma.d | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
6 | decma.m | . . . 4 ⊢ 𝑀 = ;𝐴𝐵 | |
7 | dfdec10 12705 | . . . 4 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
8 | 6, 7 | eqtri 2756 | . . 3 ⊢ 𝑀 = ((;10 · 𝐴) + 𝐵) |
9 | decma.n | . . . 4 ⊢ 𝑁 = ;𝐶𝐷 | |
10 | dfdec10 12705 | . . . 4 ⊢ ;𝐶𝐷 = ((;10 · 𝐶) + 𝐷) | |
11 | 9, 10 | eqtri 2756 | . . 3 ⊢ 𝑁 = ((;10 · 𝐶) + 𝐷) |
12 | decadd.e | . . 3 ⊢ (𝐴 + 𝐶) = 𝐸 | |
13 | decadd.f | . . 3 ⊢ (𝐵 + 𝐷) = 𝐹 | |
14 | 1, 2, 3, 4, 5, 8, 11, 12, 13 | numadd 12749 | . 2 ⊢ (𝑀 + 𝑁) = ((;10 · 𝐸) + 𝐹) |
15 | dfdec10 12705 | . 2 ⊢ ;𝐸𝐹 = ((;10 · 𝐸) + 𝐹) | |
16 | 14, 15 | eqtr4i 2759 | 1 ⊢ (𝑀 + 𝑁) = ;𝐸𝐹 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 (class class class)co 7415 0cc0 11133 1c1 11134 + caddc 11136 · cmul 11138 ℕ0cn0 12497 ;cdc 12702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7418 df-om 7866 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-er 8719 df-en 8959 df-dom 8960 df-sdom 8961 df-pnf 11275 df-mnf 11276 df-ltxr 11278 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-dec 12703 |
This theorem is referenced by: decaddm10 12761 decaddi 12762 10p10e20 12797 dec5dvds2 17028 2exp16 17054 37prm 17084 43prm 17085 317prm 17089 631prm 17090 1259lem2 17095 1259lem3 17096 1259lem4 17097 2503lem1 17100 2503lem2 17101 4001lem1 17104 4001lem2 17105 4001lem3 17106 log2ublem3 26874 log2ub 26875 1kp2ke3k 30250 hgt750lemd 34275 hgt750lem2 34279 12gcd5e1 41469 3lexlogpow5ineq1 41520 decpmul 41853 sqdeccom12 41854 sq3deccom12 41855 ex-decpmul 41859 resqrtvalex 43066 imsqrtvalex 43067 fmtno5lem4 46887 257prm 46892 fmtno4prmfac 46903 fmtno4nprmfac193 46905 fmtno5faclem3 46912 fmtno5fac 46913 |
Copyright terms: Public domain | W3C validator |