MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1mul3le Structured version   Visualization version   GIF version

Theorem deg1mul3le 26144
Description: Degree of multiplication of a polynomial on the left by a scalar. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
deg1mul3le.d 𝐷 = (deg1𝑅)
deg1mul3le.p 𝑃 = (Poly1𝑅)
deg1mul3le.k 𝐾 = (Base‘𝑅)
deg1mul3le.b 𝐵 = (Base‘𝑃)
deg1mul3le.t · = (.r𝑃)
deg1mul3le.a 𝐴 = (algSc‘𝑃)
Assertion
Ref Expression
deg1mul3le ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (𝐷‘((𝐴𝐹) · 𝐺)) ≤ (𝐷𝐺))

Proof of Theorem deg1mul3le
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 deg1mul3le.p . . . . . . . 8 𝑃 = (Poly1𝑅)
21ply1ring 22237 . . . . . . 7 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
323ad2ant1 1130 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → 𝑃 ∈ Ring)
4 deg1mul3le.a . . . . . . . . 9 𝐴 = (algSc‘𝑃)
5 deg1mul3le.k . . . . . . . . 9 𝐾 = (Base‘𝑅)
6 deg1mul3le.b . . . . . . . . 9 𝐵 = (Base‘𝑃)
71, 4, 5, 6ply1sclf 22276 . . . . . . . 8 (𝑅 ∈ Ring → 𝐴:𝐾𝐵)
873ad2ant1 1130 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → 𝐴:𝐾𝐵)
9 simp2 1134 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → 𝐹𝐾)
108, 9ffvelcdmd 7099 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (𝐴𝐹) ∈ 𝐵)
11 simp3 1135 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → 𝐺𝐵)
12 deg1mul3le.t . . . . . . 7 · = (.r𝑃)
136, 12ringcl 20233 . . . . . 6 ((𝑃 ∈ Ring ∧ (𝐴𝐹) ∈ 𝐵𝐺𝐵) → ((𝐴𝐹) · 𝐺) ∈ 𝐵)
143, 10, 11, 13syl3anc 1368 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → ((𝐴𝐹) · 𝐺) ∈ 𝐵)
15 eqid 2726 . . . . . 6 (coe1‘((𝐴𝐹) · 𝐺)) = (coe1‘((𝐴𝐹) · 𝐺))
1615, 6, 1, 5coe1f 22201 . . . . 5 (((𝐴𝐹) · 𝐺) ∈ 𝐵 → (coe1‘((𝐴𝐹) · 𝐺)):ℕ0𝐾)
1714, 16syl 17 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (coe1‘((𝐴𝐹) · 𝐺)):ℕ0𝐾)
18 eldifi 4126 . . . . . 6 (𝑎 ∈ (ℕ0 ∖ ((coe1𝐺) supp (0g𝑅))) → 𝑎 ∈ ℕ0)
19 simpl1 1188 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ ℕ0) → 𝑅 ∈ Ring)
20 simpl2 1189 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ ℕ0) → 𝐹𝐾)
21 simpl3 1190 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ ℕ0) → 𝐺𝐵)
22 simpr 483 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ ℕ0) → 𝑎 ∈ ℕ0)
23 eqid 2726 . . . . . . . 8 (.r𝑅) = (.r𝑅)
241, 6, 5, 4, 12, 23coe1sclmulfv 22274 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ ℕ0) → ((coe1‘((𝐴𝐹) · 𝐺))‘𝑎) = (𝐹(.r𝑅)((coe1𝐺)‘𝑎)))
2519, 20, 21, 22, 24syl121anc 1372 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ ℕ0) → ((coe1‘((𝐴𝐹) · 𝐺))‘𝑎) = (𝐹(.r𝑅)((coe1𝐺)‘𝑎)))
2618, 25sylan2 591 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ (ℕ0 ∖ ((coe1𝐺) supp (0g𝑅)))) → ((coe1‘((𝐴𝐹) · 𝐺))‘𝑎) = (𝐹(.r𝑅)((coe1𝐺)‘𝑎)))
27 eqid 2726 . . . . . . . . 9 (coe1𝐺) = (coe1𝐺)
2827, 6, 1, 5coe1f 22201 . . . . . . . 8 (𝐺𝐵 → (coe1𝐺):ℕ0𝐾)
29283ad2ant3 1132 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (coe1𝐺):ℕ0𝐾)
30 ssidd 4003 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → ((coe1𝐺) supp (0g𝑅)) ⊆ ((coe1𝐺) supp (0g𝑅)))
31 nn0ex 12530 . . . . . . . 8 0 ∈ V
3231a1i 11 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → ℕ0 ∈ V)
33 fvexd 6916 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (0g𝑅) ∈ V)
3429, 30, 32, 33suppssr 8210 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ (ℕ0 ∖ ((coe1𝐺) supp (0g𝑅)))) → ((coe1𝐺)‘𝑎) = (0g𝑅))
3534oveq2d 7440 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ (ℕ0 ∖ ((coe1𝐺) supp (0g𝑅)))) → (𝐹(.r𝑅)((coe1𝐺)‘𝑎)) = (𝐹(.r𝑅)(0g𝑅)))
36 eqid 2726 . . . . . . . 8 (0g𝑅) = (0g𝑅)
375, 23, 36ringrz 20273 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾) → (𝐹(.r𝑅)(0g𝑅)) = (0g𝑅))
38373adant3 1129 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (𝐹(.r𝑅)(0g𝑅)) = (0g𝑅))
3938adantr 479 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ (ℕ0 ∖ ((coe1𝐺) supp (0g𝑅)))) → (𝐹(.r𝑅)(0g𝑅)) = (0g𝑅))
4026, 35, 393eqtrd 2770 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ (ℕ0 ∖ ((coe1𝐺) supp (0g𝑅)))) → ((coe1‘((𝐴𝐹) · 𝐺))‘𝑎) = (0g𝑅))
4117, 40suppss 8208 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → ((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)) ⊆ ((coe1𝐺) supp (0g𝑅)))
42 suppssdm 8191 . . . . 5 ((coe1𝐺) supp (0g𝑅)) ⊆ dom (coe1𝐺)
4342, 29fssdm 6747 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → ((coe1𝐺) supp (0g𝑅)) ⊆ ℕ0)
44 nn0ssre 12528 . . . . 5 0 ⊆ ℝ
45 ressxr 11308 . . . . 5 ℝ ⊆ ℝ*
4644, 45sstri 3989 . . . 4 0 ⊆ ℝ*
4743, 46sstrdi 3992 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → ((coe1𝐺) supp (0g𝑅)) ⊆ ℝ*)
48 supxrss 13365 . . 3 ((((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)) ⊆ ((coe1𝐺) supp (0g𝑅)) ∧ ((coe1𝐺) supp (0g𝑅)) ⊆ ℝ*) → sup(((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)), ℝ*, < ) ≤ sup(((coe1𝐺) supp (0g𝑅)), ℝ*, < ))
4941, 47, 48syl2anc 582 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → sup(((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)), ℝ*, < ) ≤ sup(((coe1𝐺) supp (0g𝑅)), ℝ*, < ))
50 deg1mul3le.d . . . 4 𝐷 = (deg1𝑅)
5150, 1, 6, 36, 15deg1val 26123 . . 3 (((𝐴𝐹) · 𝐺) ∈ 𝐵 → (𝐷‘((𝐴𝐹) · 𝐺)) = sup(((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)), ℝ*, < ))
5214, 51syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (𝐷‘((𝐴𝐹) · 𝐺)) = sup(((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)), ℝ*, < ))
5350, 1, 6, 36, 27deg1val 26123 . . 3 (𝐺𝐵 → (𝐷𝐺) = sup(((coe1𝐺) supp (0g𝑅)), ℝ*, < ))
54533ad2ant3 1132 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (𝐷𝐺) = sup(((coe1𝐺) supp (0g𝑅)), ℝ*, < ))
5549, 52, 543brtr4d 5185 1 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (𝐷‘((𝐴𝐹) · 𝐺)) ≤ (𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  Vcvv 3462  cdif 3944  wss 3947   class class class wbr 5153  wf 6550  cfv 6554  (class class class)co 7424   supp csupp 8174  supcsup 9483  cr 11157  *cxr 11297   < clt 11298  cle 11299  0cn0 12524  Basecbs 17213  .rcmulr 17267  0gc0g 17454  Ringcrg 20216  algSccascl 21850  Poly1cpl1 22166  coe1cco1 22167  deg1cdg1 26078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236  ax-addf 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-ofr 7691  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-er 8734  df-map 8857  df-pm 8858  df-ixp 8927  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-sup 9485  df-oi 9553  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-fz 13539  df-fzo 13682  df-seq 14022  df-hash 14348  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-starv 17281  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-unif 17289  df-hom 17290  df-cco 17291  df-0g 17456  df-gsum 17457  df-prds 17462  df-pws 17464  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-mhm 18773  df-submnd 18774  df-grp 18931  df-minusg 18932  df-sbg 18933  df-mulg 19062  df-subg 19117  df-ghm 19207  df-cntz 19311  df-cmn 19780  df-abl 19781  df-mgp 20118  df-rng 20136  df-ur 20165  df-ring 20218  df-cring 20219  df-subrng 20528  df-subrg 20553  df-lmod 20838  df-lss 20909  df-cnfld 21344  df-ascl 21853  df-psr 21906  df-mvr 21907  df-mpl 21908  df-opsr 21910  df-psr1 22169  df-vr1 22170  df-ply1 22171  df-coe1 22172  df-mdeg 26079  df-deg1 26080
This theorem is referenced by:  rtelextdg2lem  33604  hbtlem2  42785
  Copyright terms: Public domain W3C validator
OSZAR »