Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dp2cl Structured version   Visualization version   GIF version

Theorem dp2cl 32616
Description: Closure for the decimal fraction constructor if both values are reals. (Contributed by David A. Wheeler, 15-May-2015.)
Assertion
Ref Expression
dp2cl ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴𝐵 ∈ ℝ)

Proof of Theorem dp2cl
StepHypRef Expression
1 df-dp2 32608 . 2 𝐴𝐵 = (𝐴 + (𝐵 / 10))
2 10re 12727 . . . 4 10 ∈ ℝ
3 10pos 12725 . . . . 5 0 < 10
42, 3gt0ne0ii 11781 . . . 4 10 ≠ 0
5 redivcl 11964 . . . 4 ((𝐵 ∈ ℝ ∧ 10 ∈ ℝ ∧ 10 ≠ 0) → (𝐵 / 10) ∈ ℝ)
62, 4, 5mp3an23 1450 . . 3 (𝐵 ∈ ℝ → (𝐵 / 10) ∈ ℝ)
7 readdcl 11222 . . 3 ((𝐴 ∈ ℝ ∧ (𝐵 / 10) ∈ ℝ) → (𝐴 + (𝐵 / 10)) ∈ ℝ)
86, 7sylan2 592 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + (𝐵 / 10)) ∈ ℝ)
91, 8eqeltrid 2833 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴𝐵 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2099  wne 2937  (class class class)co 7420  cr 11138  0cc0 11139  1c1 11140   + caddc 11142   / cdiv 11902  cdc 12708  cdp2 32607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-5 12309  df-6 12310  df-7 12311  df-8 12312  df-9 12313  df-dec 12709  df-dp2 32608
This theorem is referenced by:  dpcl  32627  dpmul100  32633  dp3mul10  32634  dpmul1000  32635  dpadd2  32646  dpadd3  32648  dpmul  32649  dpmul4  32650  hgt750lemd  34280  hgt750lem  34283  hgt750lem2  34284  hgt750leme  34290
  Copyright terms: Public domain W3C validator
OSZAR »