![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dpadd2 | Structured version Visualization version GIF version |
Description: Addition with one decimal, no carry. (Contributed by Thierry Arnoux, 29-Dec-2021.) |
Ref | Expression |
---|---|
dpadd2.a | ⊢ 𝐴 ∈ ℕ0 |
dpadd2.b | ⊢ 𝐵 ∈ ℝ+ |
dpadd2.c | ⊢ 𝐶 ∈ ℕ0 |
dpadd2.d | ⊢ 𝐷 ∈ ℝ+ |
dpadd2.e | ⊢ 𝐸 ∈ ℕ0 |
dpadd2.f | ⊢ 𝐹 ∈ ℝ+ |
dpadd2.g | ⊢ 𝐺 ∈ ℕ0 |
dpadd2.h | ⊢ 𝐻 ∈ ℕ0 |
dpadd2.i | ⊢ (𝐺 + 𝐻) = 𝐼 |
dpadd2.1 | ⊢ ((𝐴.𝐵) + (𝐶.𝐷)) = (𝐸.𝐹) |
Ref | Expression |
---|---|
dpadd2 | ⊢ ((𝐺._𝐴𝐵) + (𝐻._𝐶𝐷)) = (𝐼._𝐸𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dpadd2.g | . . . 4 ⊢ 𝐺 ∈ ℕ0 | |
2 | dpadd2.a | . . . . . 6 ⊢ 𝐴 ∈ ℕ0 | |
3 | 2 | nn0rei 12514 | . . . . 5 ⊢ 𝐴 ∈ ℝ |
4 | dpadd2.b | . . . . . 6 ⊢ 𝐵 ∈ ℝ+ | |
5 | rpre 13015 | . . . . . 6 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ) | |
6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ 𝐵 ∈ ℝ |
7 | dp2cl 32616 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → _𝐴𝐵 ∈ ℝ) | |
8 | 3, 6, 7 | mp2an 691 | . . . 4 ⊢ _𝐴𝐵 ∈ ℝ |
9 | 1, 8 | dpval2 32629 | . . 3 ⊢ (𝐺._𝐴𝐵) = (𝐺 + (_𝐴𝐵 / ;10)) |
10 | dpadd2.h | . . . 4 ⊢ 𝐻 ∈ ℕ0 | |
11 | dpadd2.c | . . . . . 6 ⊢ 𝐶 ∈ ℕ0 | |
12 | 11 | nn0rei 12514 | . . . . 5 ⊢ 𝐶 ∈ ℝ |
13 | dpadd2.d | . . . . . 6 ⊢ 𝐷 ∈ ℝ+ | |
14 | rpre 13015 | . . . . . 6 ⊢ (𝐷 ∈ ℝ+ → 𝐷 ∈ ℝ) | |
15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ 𝐷 ∈ ℝ |
16 | dp2cl 32616 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → _𝐶𝐷 ∈ ℝ) | |
17 | 12, 15, 16 | mp2an 691 | . . . 4 ⊢ _𝐶𝐷 ∈ ℝ |
18 | 10, 17 | dpval2 32629 | . . 3 ⊢ (𝐻._𝐶𝐷) = (𝐻 + (_𝐶𝐷 / ;10)) |
19 | 9, 18 | oveq12i 7432 | . 2 ⊢ ((𝐺._𝐴𝐵) + (𝐻._𝐶𝐷)) = ((𝐺 + (_𝐴𝐵 / ;10)) + (𝐻 + (_𝐶𝐷 / ;10))) |
20 | 1 | nn0cni 12515 | . . 3 ⊢ 𝐺 ∈ ℂ |
21 | 8 | recni 11259 | . . . 4 ⊢ _𝐴𝐵 ∈ ℂ |
22 | 10nn 12724 | . . . . 5 ⊢ ;10 ∈ ℕ | |
23 | 22 | nncni 12253 | . . . 4 ⊢ ;10 ∈ ℂ |
24 | 22 | nnne0i 12283 | . . . 4 ⊢ ;10 ≠ 0 |
25 | 21, 23, 24 | divcli 11987 | . . 3 ⊢ (_𝐴𝐵 / ;10) ∈ ℂ |
26 | 10 | nn0cni 12515 | . . 3 ⊢ 𝐻 ∈ ℂ |
27 | 17 | recni 11259 | . . . 4 ⊢ _𝐶𝐷 ∈ ℂ |
28 | 27, 23, 24 | divcli 11987 | . . 3 ⊢ (_𝐶𝐷 / ;10) ∈ ℂ |
29 | 20, 25, 26, 28 | add4i 11469 | . 2 ⊢ ((𝐺 + (_𝐴𝐵 / ;10)) + (𝐻 + (_𝐶𝐷 / ;10))) = ((𝐺 + 𝐻) + ((_𝐴𝐵 / ;10) + (_𝐶𝐷 / ;10))) |
30 | dpadd2.i | . . . 4 ⊢ (𝐺 + 𝐻) = 𝐼 | |
31 | 21, 27, 23, 24 | divdiri 12002 | . . . . 5 ⊢ ((_𝐴𝐵 + _𝐶𝐷) / ;10) = ((_𝐴𝐵 / ;10) + (_𝐶𝐷 / ;10)) |
32 | dpadd2.1 | . . . . . . 7 ⊢ ((𝐴.𝐵) + (𝐶.𝐷)) = (𝐸.𝐹) | |
33 | dpval 32626 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) = _𝐴𝐵) | |
34 | 2, 6, 33 | mp2an 691 | . . . . . . . 8 ⊢ (𝐴.𝐵) = _𝐴𝐵 |
35 | dpval 32626 | . . . . . . . . 9 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℝ) → (𝐶.𝐷) = _𝐶𝐷) | |
36 | 11, 15, 35 | mp2an 691 | . . . . . . . 8 ⊢ (𝐶.𝐷) = _𝐶𝐷 |
37 | 34, 36 | oveq12i 7432 | . . . . . . 7 ⊢ ((𝐴.𝐵) + (𝐶.𝐷)) = (_𝐴𝐵 + _𝐶𝐷) |
38 | dpadd2.e | . . . . . . . 8 ⊢ 𝐸 ∈ ℕ0 | |
39 | dpadd2.f | . . . . . . . . 9 ⊢ 𝐹 ∈ ℝ+ | |
40 | rpre 13015 | . . . . . . . . 9 ⊢ (𝐹 ∈ ℝ+ → 𝐹 ∈ ℝ) | |
41 | 39, 40 | ax-mp 5 | . . . . . . . 8 ⊢ 𝐹 ∈ ℝ |
42 | dpval 32626 | . . . . . . . 8 ⊢ ((𝐸 ∈ ℕ0 ∧ 𝐹 ∈ ℝ) → (𝐸.𝐹) = _𝐸𝐹) | |
43 | 38, 41, 42 | mp2an 691 | . . . . . . 7 ⊢ (𝐸.𝐹) = _𝐸𝐹 |
44 | 32, 37, 43 | 3eqtr3i 2764 | . . . . . 6 ⊢ (_𝐴𝐵 + _𝐶𝐷) = _𝐸𝐹 |
45 | 44 | oveq1i 7430 | . . . . 5 ⊢ ((_𝐴𝐵 + _𝐶𝐷) / ;10) = (_𝐸𝐹 / ;10) |
46 | 31, 45 | eqtr3i 2758 | . . . 4 ⊢ ((_𝐴𝐵 / ;10) + (_𝐶𝐷 / ;10)) = (_𝐸𝐹 / ;10) |
47 | 30, 46 | oveq12i 7432 | . . 3 ⊢ ((𝐺 + 𝐻) + ((_𝐴𝐵 / ;10) + (_𝐶𝐷 / ;10))) = (𝐼 + (_𝐸𝐹 / ;10)) |
48 | 1, 10 | nn0addcli 12540 | . . . . 5 ⊢ (𝐺 + 𝐻) ∈ ℕ0 |
49 | 30, 48 | eqeltrri 2826 | . . . 4 ⊢ 𝐼 ∈ ℕ0 |
50 | 38 | nn0rei 12514 | . . . . 5 ⊢ 𝐸 ∈ ℝ |
51 | dp2cl 32616 | . . . . 5 ⊢ ((𝐸 ∈ ℝ ∧ 𝐹 ∈ ℝ) → _𝐸𝐹 ∈ ℝ) | |
52 | 50, 41, 51 | mp2an 691 | . . . 4 ⊢ _𝐸𝐹 ∈ ℝ |
53 | 49, 52 | dpval2 32629 | . . 3 ⊢ (𝐼._𝐸𝐹) = (𝐼 + (_𝐸𝐹 / ;10)) |
54 | 47, 53 | eqtr4i 2759 | . 2 ⊢ ((𝐺 + 𝐻) + ((_𝐴𝐵 / ;10) + (_𝐶𝐷 / ;10))) = (𝐼._𝐸𝐹) |
55 | 19, 29, 54 | 3eqtri 2760 | 1 ⊢ ((𝐺._𝐴𝐵) + (𝐻._𝐶𝐷)) = (𝐼._𝐸𝐹) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 (class class class)co 7420 ℝcr 11138 0cc0 11139 1c1 11140 + caddc 11142 / cdiv 11902 ℕ0cn0 12503 ;cdc 12708 ℝ+crp 13007 _cdp2 32607 .cdp 32624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 df-9 12313 df-n0 12504 df-dec 12709 df-rp 13008 df-dp2 32608 df-dp 32625 |
This theorem is referenced by: hgt750lemd 34280 |
Copyright terms: Public domain | W3C validator |