![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvntaylp0 | Structured version Visualization version GIF version |
Description: The first 𝑁 derivatives of the Taylor polynomial at 𝐵 match the derivatives of the function from which it is derived. (Contributed by Mario Carneiro, 1-Jan-2017.) |
Ref | Expression |
---|---|
dvntaylp0.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
dvntaylp0.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
dvntaylp0.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
dvntaylp0.m | ⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) |
dvntaylp0.b | ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) |
dvntaylp0.t | ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) |
Ref | Expression |
---|---|
dvntaylp0 | ⊢ (𝜑 → (((ℂ D𝑛 𝑇)‘𝑀)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvntaylp0.m | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) | |
2 | elfz3nn0 13627 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ (0...𝑁) → 𝑁 ∈ ℕ0) | |
3 | 1, 2 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
4 | 3 | nn0cnd 12564 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
5 | elfznn0 13626 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℕ0) | |
6 | 1, 5 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
7 | 6 | nn0cnd 12564 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
8 | 4, 7 | npcand 11605 | . . . . . . . 8 ⊢ (𝜑 → ((𝑁 − 𝑀) + 𝑀) = 𝑁) |
9 | 8 | oveq1d 7435 | . . . . . . 7 ⊢ (𝜑 → (((𝑁 − 𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵) = (𝑁(𝑆 Tayl 𝐹)𝐵)) |
10 | dvntaylp0.t | . . . . . . 7 ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) | |
11 | 9, 10 | eqtr4di 2786 | . . . . . 6 ⊢ (𝜑 → (((𝑁 − 𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵) = 𝑇) |
12 | 11 | oveq2d 7436 | . . . . 5 ⊢ (𝜑 → (ℂ D𝑛 (((𝑁 − 𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵)) = (ℂ D𝑛 𝑇)) |
13 | 12 | fveq1d 6899 | . . . 4 ⊢ (𝜑 → ((ℂ D𝑛 (((𝑁 − 𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((ℂ D𝑛 𝑇)‘𝑀)) |
14 | dvntaylp0.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
15 | dvntaylp0.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
16 | dvntaylp0.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) | |
17 | fznn0sub 13565 | . . . . . 6 ⊢ (𝑀 ∈ (0...𝑁) → (𝑁 − 𝑀) ∈ ℕ0) | |
18 | 1, 17 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑁 − 𝑀) ∈ ℕ0) |
19 | dvntaylp0.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) | |
20 | 8 | fveq2d 6901 | . . . . . . 7 ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘((𝑁 − 𝑀) + 𝑀)) = ((𝑆 D𝑛 𝐹)‘𝑁)) |
21 | 20 | dmeqd 5908 | . . . . . 6 ⊢ (𝜑 → dom ((𝑆 D𝑛 𝐹)‘((𝑁 − 𝑀) + 𝑀)) = dom ((𝑆 D𝑛 𝐹)‘𝑁)) |
22 | 19, 21 | eleqtrrd 2832 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘((𝑁 − 𝑀) + 𝑀))) |
23 | 14, 15, 16, 6, 18, 22 | dvntaylp 26305 | . . . 4 ⊢ (𝜑 → ((ℂ D𝑛 (((𝑁 − 𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)) |
24 | 13, 23 | eqtr3d 2770 | . . 3 ⊢ (𝜑 → ((ℂ D𝑛 𝑇)‘𝑀) = ((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)) |
25 | 24 | fveq1d 6899 | . 2 ⊢ (𝜑 → (((ℂ D𝑛 𝑇)‘𝑀)‘𝐵) = (((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)‘𝐵)) |
26 | cnex 11219 | . . . . . . 7 ⊢ ℂ ∈ V | |
27 | 26 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℂ ∈ V) |
28 | elpm2r 8863 | . . . . . 6 ⊢ (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆)) | |
29 | 27, 14, 15, 16, 28 | syl22anc 838 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm 𝑆)) |
30 | dvnf 25856 | . . . . 5 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑀):dom ((𝑆 D𝑛 𝐹)‘𝑀)⟶ℂ) | |
31 | 14, 29, 6, 30 | syl3anc 1369 | . . . 4 ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑀):dom ((𝑆 D𝑛 𝐹)‘𝑀)⟶ℂ) |
32 | dvnbss 25857 | . . . . . . 7 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ dom 𝐹) | |
33 | 14, 29, 6, 32 | syl3anc 1369 | . . . . . 6 ⊢ (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ dom 𝐹) |
34 | 15, 33 | fssdmd 6741 | . . . . 5 ⊢ (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ 𝐴) |
35 | 34, 16 | sstrd 3990 | . . . 4 ⊢ (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ 𝑆) |
36 | 18 | orcd 872 | . . . 4 ⊢ (𝜑 → ((𝑁 − 𝑀) ∈ ℕ0 ∨ (𝑁 − 𝑀) = +∞)) |
37 | dvnadd 25858 | . . . . . . . . 9 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑀 ∈ ℕ0 ∧ (𝑁 − 𝑀) ∈ ℕ0)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁 − 𝑀)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑁 − 𝑀)))) | |
38 | 14, 29, 6, 18, 37 | syl22anc 838 | . . . . . . . 8 ⊢ (𝜑 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁 − 𝑀)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑁 − 𝑀)))) |
39 | 7, 4 | pncan3d 11604 | . . . . . . . . 9 ⊢ (𝜑 → (𝑀 + (𝑁 − 𝑀)) = 𝑁) |
40 | 39 | fveq2d 6901 | . . . . . . . 8 ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑁 − 𝑀))) = ((𝑆 D𝑛 𝐹)‘𝑁)) |
41 | 38, 40 | eqtrd 2768 | . . . . . . 7 ⊢ (𝜑 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁 − 𝑀)) = ((𝑆 D𝑛 𝐹)‘𝑁)) |
42 | 41 | dmeqd 5908 | . . . . . 6 ⊢ (𝜑 → dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁 − 𝑀)) = dom ((𝑆 D𝑛 𝐹)‘𝑁)) |
43 | 19, 42 | eleqtrrd 2832 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁 − 𝑀))) |
44 | 14, 31, 35, 18, 43 | taylplem1 26296 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,](𝑁 − 𝑀)) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘)) |
45 | eqid 2728 | . . . 4 ⊢ ((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵) = ((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵) | |
46 | 14, 31, 35, 36, 44, 45 | tayl0 26295 | . . 3 ⊢ (𝜑 → (𝐵 ∈ dom ((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵) ∧ (((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵))) |
47 | 46 | simprd 495 | . 2 ⊢ (𝜑 → (((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵)) |
48 | 25, 47 | eqtrd 2768 | 1 ⊢ (𝜑 → (((ℂ D𝑛 𝑇)‘𝑀)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3471 ⊆ wss 3947 {cpr 4631 dom cdm 5678 ⟶wf 6544 ‘cfv 6548 (class class class)co 7420 ↑pm cpm 8845 ℂcc 11136 ℝcr 11137 0cc0 11138 + caddc 11141 +∞cpnf 11275 − cmin 11474 ℕ0cn0 12502 ...cfz 13516 D𝑛 cdvn 25792 Tayl ctayl 26286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-inf2 9664 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 ax-addf 11217 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-of 7685 df-om 7871 df-1st 7993 df-2nd 7994 df-supp 8166 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-2o 8487 df-er 8724 df-map 8846 df-pm 8847 df-ixp 8916 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-fsupp 9386 df-fi 9434 df-sup 9465 df-inf 9466 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-xnn0 12575 df-z 12589 df-dec 12708 df-uz 12853 df-q 12963 df-rp 13007 df-xneg 13124 df-xadd 13125 df-xmul 13126 df-icc 13363 df-fz 13517 df-fzo 13660 df-seq 13999 df-exp 14059 df-fac 14265 df-hash 14322 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-clim 15464 df-sum 15665 df-struct 17115 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-mulr 17246 df-starv 17247 df-sca 17248 df-vsca 17249 df-ip 17250 df-tset 17251 df-ple 17252 df-ds 17254 df-unif 17255 df-hom 17256 df-cco 17257 df-rest 17403 df-topn 17404 df-0g 17422 df-gsum 17423 df-topgen 17424 df-pt 17425 df-prds 17428 df-xrs 17483 df-qtop 17488 df-imas 17489 df-xps 17491 df-mre 17565 df-mrc 17566 df-acs 17568 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-submnd 18740 df-grp 18892 df-minusg 18893 df-mulg 19023 df-cntz 19267 df-cmn 19736 df-abl 19737 df-mgp 20074 df-ur 20121 df-ring 20174 df-cring 20175 df-psmet 21270 df-xmet 21271 df-met 21272 df-bl 21273 df-mopn 21274 df-fbas 21275 df-fg 21276 df-cnfld 21279 df-top 22795 df-topon 22812 df-topsp 22834 df-bases 22848 df-cld 22922 df-ntr 22923 df-cls 22924 df-nei 23001 df-lp 23039 df-perf 23040 df-cn 23130 df-cnp 23131 df-haus 23218 df-tx 23465 df-hmeo 23658 df-fil 23749 df-fm 23841 df-flim 23842 df-flf 23843 df-tsms 24030 df-xms 24225 df-ms 24226 df-tms 24227 df-cncf 24797 df-limc 25794 df-dv 25795 df-dvn 25796 df-tayl 26288 |
This theorem is referenced by: taylthlem1 26307 taylthlem2 26308 taylthlem2OLD 26309 |
Copyright terms: Public domain | W3C validator |