![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgh | Structured version Visualization version GIF version |
Description: The exponential function of a scaled complex number is a group homomorphism from the group of complex numbers under addition to the set of complex numbers under multiplication. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 11-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.) |
Ref | Expression |
---|---|
efgh.1 | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (exp‘(𝐴 · 𝑥))) |
Ref | Expression |
---|---|
efgh | ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐹‘(𝐵 + 𝐶)) = ((𝐹‘𝐵) · (𝐹‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1195 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → 𝐴 ∈ ℂ) | |
2 | simp1r 1196 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → 𝑋 ∈ (SubGrp‘ℂfld)) | |
3 | cnfldbas 21283 | . . . . . . . 8 ⊢ ℂ = (Base‘ℂfld) | |
4 | 3 | subgss 19082 | . . . . . . 7 ⊢ (𝑋 ∈ (SubGrp‘ℂfld) → 𝑋 ⊆ ℂ) |
5 | 2, 4 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → 𝑋 ⊆ ℂ) |
6 | simp2 1135 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → 𝐵 ∈ 𝑋) | |
7 | 5, 6 | sseldd 3981 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → 𝐵 ∈ ℂ) |
8 | simp3 1136 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → 𝐶 ∈ 𝑋) | |
9 | 5, 8 | sseldd 3981 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → 𝐶 ∈ ℂ) |
10 | 1, 7, 9 | adddid 11269 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
11 | 10 | fveq2d 6901 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (exp‘(𝐴 · (𝐵 + 𝐶))) = (exp‘((𝐴 · 𝐵) + (𝐴 · 𝐶)))) |
12 | 1, 7 | mulcld 11265 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴 · 𝐵) ∈ ℂ) |
13 | 1, 9 | mulcld 11265 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴 · 𝐶) ∈ ℂ) |
14 | efadd 16071 | . . . 4 ⊢ (((𝐴 · 𝐵) ∈ ℂ ∧ (𝐴 · 𝐶) ∈ ℂ) → (exp‘((𝐴 · 𝐵) + (𝐴 · 𝐶))) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶)))) | |
15 | 12, 13, 14 | syl2anc 583 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (exp‘((𝐴 · 𝐵) + (𝐴 · 𝐶))) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶)))) |
16 | 11, 15 | eqtrd 2768 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (exp‘(𝐴 · (𝐵 + 𝐶))) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶)))) |
17 | efgh.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (exp‘(𝐴 · 𝑥))) | |
18 | oveq2 7428 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦)) | |
19 | 18 | fveq2d 6901 | . . . . 5 ⊢ (𝑥 = 𝑦 → (exp‘(𝐴 · 𝑥)) = (exp‘(𝐴 · 𝑦))) |
20 | 19 | cbvmptv 5261 | . . . 4 ⊢ (𝑥 ∈ 𝑋 ↦ (exp‘(𝐴 · 𝑥))) = (𝑦 ∈ 𝑋 ↦ (exp‘(𝐴 · 𝑦))) |
21 | 17, 20 | eqtri 2756 | . . 3 ⊢ 𝐹 = (𝑦 ∈ 𝑋 ↦ (exp‘(𝐴 · 𝑦))) |
22 | oveq2 7428 | . . . 4 ⊢ (𝑦 = (𝐵 + 𝐶) → (𝐴 · 𝑦) = (𝐴 · (𝐵 + 𝐶))) | |
23 | 22 | fveq2d 6901 | . . 3 ⊢ (𝑦 = (𝐵 + 𝐶) → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · (𝐵 + 𝐶)))) |
24 | cnfldadd 21285 | . . . . 5 ⊢ + = (+g‘ℂfld) | |
25 | 24 | subgcl 19091 | . . . 4 ⊢ ((𝑋 ∈ (SubGrp‘ℂfld) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵 + 𝐶) ∈ 𝑋) |
26 | 25 | 3adant1l 1174 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵 + 𝐶) ∈ 𝑋) |
27 | fvexd 6912 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (exp‘(𝐴 · (𝐵 + 𝐶))) ∈ V) | |
28 | 21, 23, 26, 27 | fvmptd3 7028 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐹‘(𝐵 + 𝐶)) = (exp‘(𝐴 · (𝐵 + 𝐶)))) |
29 | oveq2 7428 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 · 𝑦) = (𝐴 · 𝐵)) | |
30 | 29 | fveq2d 6901 | . . . 4 ⊢ (𝑦 = 𝐵 → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · 𝐵))) |
31 | fvexd 6912 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (exp‘(𝐴 · 𝐵)) ∈ V) | |
32 | 21, 30, 6, 31 | fvmptd3 7028 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐹‘𝐵) = (exp‘(𝐴 · 𝐵))) |
33 | oveq2 7428 | . . . . 5 ⊢ (𝑦 = 𝐶 → (𝐴 · 𝑦) = (𝐴 · 𝐶)) | |
34 | 33 | fveq2d 6901 | . . . 4 ⊢ (𝑦 = 𝐶 → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · 𝐶))) |
35 | fvexd 6912 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (exp‘(𝐴 · 𝐶)) ∈ V) | |
36 | 21, 34, 8, 35 | fvmptd3 7028 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐹‘𝐶) = (exp‘(𝐴 · 𝐶))) |
37 | 32, 36 | oveq12d 7438 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐹‘𝐵) · (𝐹‘𝐶)) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶)))) |
38 | 16, 28, 37 | 3eqtr4d 2778 | 1 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐹‘(𝐵 + 𝐶)) = ((𝐹‘𝐵) · (𝐹‘𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 Vcvv 3471 ⊆ wss 3947 ↦ cmpt 5231 ‘cfv 6548 (class class class)co 7420 ℂcc 11137 + caddc 11142 · cmul 11144 expce 16038 SubGrpcsubg 19075 ℂfldccnfld 21279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-inf2 9665 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 ax-addf 11218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9466 df-inf 9467 df-oi 9534 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 df-9 12313 df-n0 12504 df-z 12590 df-dec 12709 df-uz 12854 df-rp 13008 df-ico 13363 df-fz 13518 df-fzo 13661 df-fl 13790 df-seq 14000 df-exp 14060 df-fac 14266 df-bc 14295 df-hash 14323 df-shft 15047 df-cj 15079 df-re 15080 df-im 15081 df-sqrt 15215 df-abs 15216 df-limsup 15448 df-clim 15465 df-rlim 15466 df-sum 15666 df-ef 16044 df-struct 17116 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-ress 17210 df-plusg 17246 df-mulr 17247 df-starv 17248 df-tset 17252 df-ple 17253 df-ds 17255 df-unif 17256 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-grp 18893 df-subg 19078 df-cnfld 21280 |
This theorem is referenced by: efabl 26497 |
Copyright terms: Public domain | W3C validator |