![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frlmplusgval | Structured version Visualization version GIF version |
Description: Addition in a free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
Ref | Expression |
---|---|
frlmplusgval.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
frlmplusgval.b | ⊢ 𝐵 = (Base‘𝑌) |
frlmplusgval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
frlmplusgval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
frlmplusgval.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
frlmplusgval.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
frlmplusgval.a | ⊢ + = (+g‘𝑅) |
frlmplusgval.p | ⊢ ✚ = (+g‘𝑌) |
Ref | Expression |
---|---|
frlmplusgval | ⊢ (𝜑 → (𝐹 ✚ 𝐺) = (𝐹 ∘f + 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmplusgval.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
2 | frlmplusgval.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
3 | frlmplusgval.y | . . . . . . 7 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
4 | eqid 2725 | . . . . . . 7 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
5 | 3, 4 | frlmpws 21686 | . . . . . 6 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌))) |
6 | 1, 2, 5 | syl2anc 582 | . . . . 5 ⊢ (𝜑 → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌))) |
7 | 6 | fveq2d 6895 | . . . 4 ⊢ (𝜑 → (+g‘𝑌) = (+g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌)))) |
8 | frlmplusgval.p | . . . 4 ⊢ ✚ = (+g‘𝑌) | |
9 | fvex 6904 | . . . . 5 ⊢ (Base‘𝑌) ∈ V | |
10 | eqid 2725 | . . . . . 6 ⊢ (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌)) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌)) | |
11 | eqid 2725 | . . . . . 6 ⊢ (+g‘((ringLMod‘𝑅) ↑s 𝐼)) = (+g‘((ringLMod‘𝑅) ↑s 𝐼)) | |
12 | 10, 11 | ressplusg 17268 | . . . . 5 ⊢ ((Base‘𝑌) ∈ V → (+g‘((ringLMod‘𝑅) ↑s 𝐼)) = (+g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌)))) |
13 | 9, 12 | ax-mp 5 | . . . 4 ⊢ (+g‘((ringLMod‘𝑅) ↑s 𝐼)) = (+g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌))) |
14 | 7, 8, 13 | 3eqtr4g 2790 | . . 3 ⊢ (𝜑 → ✚ = (+g‘((ringLMod‘𝑅) ↑s 𝐼))) |
15 | 14 | oveqd 7432 | . 2 ⊢ (𝜑 → (𝐹 ✚ 𝐺) = (𝐹(+g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺)) |
16 | eqid 2725 | . . 3 ⊢ ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼) | |
17 | eqid 2725 | . . 3 ⊢ (Base‘((ringLMod‘𝑅) ↑s 𝐼)) = (Base‘((ringLMod‘𝑅) ↑s 𝐼)) | |
18 | fvexd 6906 | . . 3 ⊢ (𝜑 → (ringLMod‘𝑅) ∈ V) | |
19 | frlmplusgval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑌) | |
20 | 3, 19 | frlmpws 21686 | . . . . . . . 8 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) |
21 | 1, 2, 20 | syl2anc 582 | . . . . . . 7 ⊢ (𝜑 → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) |
22 | 21 | fveq2d 6895 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑌) = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) |
23 | 19, 22 | eqtrid 2777 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) |
24 | eqid 2725 | . . . . . 6 ⊢ (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) | |
25 | 24, 17 | ressbasss 17216 | . . . . 5 ⊢ (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼)) |
26 | 23, 25 | eqsstrdi 4027 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼))) |
27 | frlmplusgval.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
28 | 26, 27 | sseldd 3973 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼))) |
29 | frlmplusgval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
30 | 26, 29 | sseldd 3973 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼))) |
31 | frlmplusgval.a | . . . 4 ⊢ + = (+g‘𝑅) | |
32 | rlmplusg 21089 | . . . 4 ⊢ (+g‘𝑅) = (+g‘(ringLMod‘𝑅)) | |
33 | 31, 32 | eqtri 2753 | . . 3 ⊢ + = (+g‘(ringLMod‘𝑅)) |
34 | 16, 17, 18, 2, 28, 30, 33, 11 | pwsplusgval 17469 | . 2 ⊢ (𝜑 → (𝐹(+g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺) = (𝐹 ∘f + 𝐺)) |
35 | 15, 34 | eqtrd 2765 | 1 ⊢ (𝜑 → (𝐹 ✚ 𝐺) = (𝐹 ∘f + 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3463 ‘cfv 6542 (class class class)co 7415 ∘f cof 7679 Basecbs 17177 ↾s cress 17206 +gcplusg 17230 ↑s cpws 17425 ringLModcrglmod 21059 freeLMod cfrlm 21682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-of 7681 df-om 7868 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-map 8843 df-ixp 8913 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-sup 9463 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12501 df-z 12587 df-dec 12706 df-uz 12851 df-fz 13515 df-struct 17113 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-mulr 17244 df-sca 17246 df-vsca 17247 df-ip 17248 df-tset 17249 df-ple 17250 df-ds 17252 df-hom 17254 df-cco 17255 df-prds 17426 df-pws 17428 df-sra 21060 df-rgmod 21061 df-dsmm 21668 df-frlm 21683 |
This theorem is referenced by: frlmvplusgvalc 21703 frlmphl 21717 frlmup1 21734 matplusg2 22345 zlmodzxzadd 47533 |
Copyright terms: Public domain | W3C validator |