MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmplusgval Structured version   Visualization version   GIF version

Theorem frlmplusgval 21700
Description: Addition in a free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
frlmplusgval.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmplusgval.b 𝐵 = (Base‘𝑌)
frlmplusgval.r (𝜑𝑅𝑉)
frlmplusgval.i (𝜑𝐼𝑊)
frlmplusgval.f (𝜑𝐹𝐵)
frlmplusgval.g (𝜑𝐺𝐵)
frlmplusgval.a + = (+g𝑅)
frlmplusgval.p = (+g𝑌)
Assertion
Ref Expression
frlmplusgval (𝜑 → (𝐹 𝐺) = (𝐹f + 𝐺))

Proof of Theorem frlmplusgval
StepHypRef Expression
1 frlmplusgval.r . . . . . 6 (𝜑𝑅𝑉)
2 frlmplusgval.i . . . . . 6 (𝜑𝐼𝑊)
3 frlmplusgval.y . . . . . . 7 𝑌 = (𝑅 freeLMod 𝐼)
4 eqid 2725 . . . . . . 7 (Base‘𝑌) = (Base‘𝑌)
53, 4frlmpws 21686 . . . . . 6 ((𝑅𝑉𝐼𝑊) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌)))
61, 2, 5syl2anc 582 . . . . 5 (𝜑𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌)))
76fveq2d 6895 . . . 4 (𝜑 → (+g𝑌) = (+g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌))))
8 frlmplusgval.p . . . 4 = (+g𝑌)
9 fvex 6904 . . . . 5 (Base‘𝑌) ∈ V
10 eqid 2725 . . . . . 6 (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌)) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌))
11 eqid 2725 . . . . . 6 (+g‘((ringLMod‘𝑅) ↑s 𝐼)) = (+g‘((ringLMod‘𝑅) ↑s 𝐼))
1210, 11ressplusg 17268 . . . . 5 ((Base‘𝑌) ∈ V → (+g‘((ringLMod‘𝑅) ↑s 𝐼)) = (+g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌))))
139, 12ax-mp 5 . . . 4 (+g‘((ringLMod‘𝑅) ↑s 𝐼)) = (+g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌)))
147, 8, 133eqtr4g 2790 . . 3 (𝜑 = (+g‘((ringLMod‘𝑅) ↑s 𝐼)))
1514oveqd 7432 . 2 (𝜑 → (𝐹 𝐺) = (𝐹(+g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺))
16 eqid 2725 . . 3 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
17 eqid 2725 . . 3 (Base‘((ringLMod‘𝑅) ↑s 𝐼)) = (Base‘((ringLMod‘𝑅) ↑s 𝐼))
18 fvexd 6906 . . 3 (𝜑 → (ringLMod‘𝑅) ∈ V)
19 frlmplusgval.b . . . . . 6 𝐵 = (Base‘𝑌)
203, 19frlmpws 21686 . . . . . . . 8 ((𝑅𝑉𝐼𝑊) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
211, 2, 20syl2anc 582 . . . . . . 7 (𝜑𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
2221fveq2d 6895 . . . . . 6 (𝜑 → (Base‘𝑌) = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
2319, 22eqtrid 2777 . . . . 5 (𝜑𝐵 = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
24 eqid 2725 . . . . . 6 (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)
2524, 17ressbasss 17216 . . . . 5 (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼))
2623, 25eqsstrdi 4027 . . . 4 (𝜑𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
27 frlmplusgval.f . . . 4 (𝜑𝐹𝐵)
2826, 27sseldd 3973 . . 3 (𝜑𝐹 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
29 frlmplusgval.g . . . 4 (𝜑𝐺𝐵)
3026, 29sseldd 3973 . . 3 (𝜑𝐺 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
31 frlmplusgval.a . . . 4 + = (+g𝑅)
32 rlmplusg 21089 . . . 4 (+g𝑅) = (+g‘(ringLMod‘𝑅))
3331, 32eqtri 2753 . . 3 + = (+g‘(ringLMod‘𝑅))
3416, 17, 18, 2, 28, 30, 33, 11pwsplusgval 17469 . 2 (𝜑 → (𝐹(+g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺) = (𝐹f + 𝐺))
3515, 34eqtrd 2765 1 (𝜑 → (𝐹 𝐺) = (𝐹f + 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  Vcvv 3463  cfv 6542  (class class class)co 7415  f cof 7679  Basecbs 17177  s cress 17206  +gcplusg 17230  s cpws 17425  ringLModcrglmod 21059   freeLMod cfrlm 21682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-of 7681  df-om 7868  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-er 8721  df-map 8843  df-ixp 8913  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-sup 9463  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12501  df-z 12587  df-dec 12706  df-uz 12851  df-fz 13515  df-struct 17113  df-sets 17130  df-slot 17148  df-ndx 17160  df-base 17178  df-ress 17207  df-plusg 17243  df-mulr 17244  df-sca 17246  df-vsca 17247  df-ip 17248  df-tset 17249  df-ple 17250  df-ds 17252  df-hom 17254  df-cco 17255  df-prds 17426  df-pws 17428  df-sra 21060  df-rgmod 21061  df-dsmm 21668  df-frlm 21683
This theorem is referenced by:  frlmvplusgvalc  21703  frlmphl  21717  frlmup1  21734  matplusg2  22345  zlmodzxzadd  47533
  Copyright terms: Public domain W3C validator
OSZAR »