MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmpws Structured version   Visualization version   GIF version

Theorem frlmpws 21691
Description: The free module as a restriction of the power module. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
frlmval.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmpws.b 𝐵 = (Base‘𝐹)
Assertion
Ref Expression
frlmpws ((𝑅𝑉𝐼𝑊) → 𝐹 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))

Proof of Theorem frlmpws
StepHypRef Expression
1 eqid 2728 . . . 4 (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))) = (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)})))
21dsmmval2 21677 . . 3 (𝑅m (𝐼 × {(ringLMod‘𝑅)})) = ((𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) ↾s (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))))
3 rlmsca 21098 . . . . . 6 (𝑅𝑉𝑅 = (Scalar‘(ringLMod‘𝑅)))
43adantr 479 . . . . 5 ((𝑅𝑉𝐼𝑊) → 𝑅 = (Scalar‘(ringLMod‘𝑅)))
54oveq1d 7441 . . . 4 ((𝑅𝑉𝐼𝑊) → (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
6 frlmval.f . . . . . . . 8 𝐹 = (𝑅 freeLMod 𝐼)
76frlmval 21689 . . . . . . 7 ((𝑅𝑉𝐼𝑊) → 𝐹 = (𝑅m (𝐼 × {(ringLMod‘𝑅)})))
87eqcomd 2734 . . . . . 6 ((𝑅𝑉𝐼𝑊) → (𝑅m (𝐼 × {(ringLMod‘𝑅)})) = 𝐹)
98fveq2d 6906 . . . . 5 ((𝑅𝑉𝐼𝑊) → (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))) = (Base‘𝐹))
10 frlmpws.b . . . . 5 𝐵 = (Base‘𝐹)
119, 10eqtr4di 2786 . . . 4 ((𝑅𝑉𝐼𝑊) → (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))) = 𝐵)
125, 11oveq12d 7444 . . 3 ((𝑅𝑉𝐼𝑊) → ((𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) ↾s (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)})))) = (((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})) ↾s 𝐵))
132, 12eqtrid 2780 . 2 ((𝑅𝑉𝐼𝑊) → (𝑅m (𝐼 × {(ringLMod‘𝑅)})) = (((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})) ↾s 𝐵))
14 fvex 6915 . . . . 5 (ringLMod‘𝑅) ∈ V
15 eqid 2728 . . . . . 6 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
16 eqid 2728 . . . . . 6 (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅))
1715, 16pwsval 17475 . . . . 5 (((ringLMod‘𝑅) ∈ V ∧ 𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
1814, 17mpan 688 . . . 4 (𝐼𝑊 → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
1918adantl 480 . . 3 ((𝑅𝑉𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
2019oveq1d 7441 . 2 ((𝑅𝑉𝐼𝑊) → (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) = (((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})) ↾s 𝐵))
2113, 7, 203eqtr4d 2778 1 ((𝑅𝑉𝐼𝑊) → 𝐹 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  Vcvv 3473  {csn 4632   × cxp 5680  cfv 6553  (class class class)co 7426  Basecbs 17187  s cress 17216  Scalarcsca 17243  Xscprds 17434  s cpws 17435  ringLModcrglmod 21064  m cdsmm 21672   freeLMod cfrlm 21687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-ixp 8923  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-sup 9473  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-fz 13525  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-mulr 17254  df-sca 17256  df-vsca 17257  df-ip 17258  df-tset 17259  df-ple 17260  df-ds 17262  df-hom 17264  df-cco 17265  df-prds 17436  df-pws 17438  df-sra 21065  df-rgmod 21066  df-dsmm 21673  df-frlm 21688
This theorem is referenced by:  frlmsca  21694  frlm0  21695  frlmplusgval  21705  frlmsubgval  21706  frlmvscafval  21707  frlmgsum  21713  frlmsplit2  21714  frlmip  21719  rrxprds  25337
  Copyright terms: Public domain W3C validator
OSZAR »